Agarwal et al. Journal of Inequalities and Applications 2012, 2012:77 http://www.journalofinequalitiesandapplications.com/content/2012/1/77 Journal of Inequalities and Applications

RESEARCH Open Access

Nonlinear *c*-Fuzzy stability of cubic functional equations

Ravi P Agarwal^{1,2*}, Yeol Je Cho³, Reza Saadati⁴ and Shenghua Wang⁵

¹Department of Mathematics, Texas A&M University - Kingsville, Kingsville, TX 78363, USA Full list of author information is available at the end of the article

Abstract

We establish some stability results for the cubic functional equations

$$3f(x+3y) + f(3x-y) = 15f(x+y) + 15f(x-y) + 80f(y)$$

$$f\left(2x+\gamma\right) + f\left(2x-\gamma\right) = 2f\left(x+\gamma\right) + 2f\left(x-\gamma\right) + 12f\left(x\right)$$

and

$$f\left(3x+\gamma\right) + f\left(3x-\gamma\right) = 3f\left(x+\gamma\right) + 3f\left(x-\gamma\right) + 48f\left(x\right)$$

in the setting of various \mathcal{L} -fuzzy normed spaces that in turn generalize a Hyers-Ulam stability result in the framework of classical normed spaces. First, we shall prove the stability of cubic functional equations in the ℓ -fuzzy normed space under arbitrary tnorm which generalizes previous studies. Then, we prove the stability of cubic functional equations in the non-Archimedean $\mathcal L$ -fuzzy normed space. We therefore provide a link among different disciplines: fuzzy set theory, lattice theory, non-Archimedean spaces, and mathematical analysis.

Mathematics Subject Classification (2000): Primary 54E40; Secondary 39B82, 46S50, 46S40.

Keywords: stability, cubic functional equation, fuzzy normed space, -fuzzy set

1. Introduction

The study of stability problems for functional equations is related to a question of Ulam [1] concerning the stability of group homomorphisms and it was affirmatively answered for Banach spaces by Hyers [2]. Subsequently, the result of Hyers was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. The article [4] of Rassias has provided a lot of influence in the development of what we now call Hyers-Ulam-Rassias stability of functional equations. For more informations on such problems, refer to the papers [5-15].

The functional equations

$$3f(x+3y) + f(3x-y) = 15f(x+y) + 15f(x-y) + 80f(y), \tag{1.1}$$

$$f(2x+y) + f(2x-y) = 2f(x+y) + 2f(x-y) + 12f(x)$$
 (1.2)

^{*} Correspondence: agarwal@tamuk.

and

$$f(3x+y) + f(3x-y) = 3f(x+y) + 3f(x-y) + 48f(x)$$
 (1.3)

are called the *cubic functional equations*, since the function $f(x) = cx^3$ is their solution. Every solution of the cubic functional equations is said to be a *cubic mapping*. The stability problem for the cubic functional equations was studied by Jun and Kim [16] for mappings $f: X \to Y$, where X is a real normed space and Y is a Banach space. Later a number of mathematicians worked on the stability of some types of cubic equations [4,17-19]. Furthermore, Mirmostafaee and Moslehian [20], Mirmostafaee et al. [21], Alsina [22], Miheţ and Radu [23] and others [24-28] investigated the stability in the settings of fuzzy, probabilistic, and random normed spaces.

2. Preliminaries

In this section, we recall some definitions and results which are needed to prove our main results.

A *triangular norm* (shorter *t-norm*) is a binary operation on the unit interval [0,1], i. e., a function $T:[0,1]\times[0,1]\to[0,1]$ such that for all $a,b,c\in[0,1]$ the following four axioms are satisfied:

- (i) T(a, b) = T(b, a) (: commutativity);
- (ii) T(a, (T(b, c))) = T(T(a, b), c) (: associativity);
- (iii) T(a, 1) = a (: boundary condition);
- (iv) $T(a, b) \le T(a, c)$ whenever $b \le c$ (: monotonicity).

Basic examples are the Lukasiewicz *t*-norm T_L , $T_L(a, b) = \max(a + b - 1, 0) \forall a, b \in [0,1]$ and the *t*-norms T_P , T_M , T_D , where T_P (a, b) := ab, T_M $(a, b) := \min\{a, b\}$,

$$T_D\left(a,\,b\right)\,:=\,\begin{cases} \min\left(a,\,b\right),\,\text{if }\max\left(a,b\right)\,=\,1;\\ 0,\qquad\text{otherwise}. \end{cases}$$

If T is a t-norm then $x_T^{(n)}$ is defined for every $x \in [0,1]$ and $n \in N \cup \{0\}$ by 1, if n = 0 and $T\left(x_T^{(n-1)}, x\right)$, if $n \ge 1$. A t-norm T is said to be *of Hadžić-type* (we denote by $T \in \mathcal{H}$) if the family $\left(x_T^{(n)}\right)_{n \in N}$ is equicontinuous at x = 1 (cf. [29]).

Other important triangular norms are (see [30]):

-the Sugeno-Weber family $\left\{T_{\lambda}^{\text{SW}}\right\}_{\lambda \in [-1, \infty]}$ is defined by $T_{-1}^{\text{SW}} = T_D$, $T_{\infty}^{\text{SW}} = T_P$ and

$$T_{\lambda}^{\text{SW}}(x, y) = \max\left(0, \frac{x + y - 1 + \lambda xy}{1 + \lambda}\right)$$

if $\lambda \in (-1, \infty)$.

-the *Domby family* $\left\{T_{\lambda}^{\mathrm{D}}\right\}_{\lambda\in[0,\infty]}$ defined by T_{D} , if λ = 0, T_{M} , if λ = ∞ and

$$T_{\lambda}^{\mathrm{D}}(x,\gamma) = \frac{1}{1 + \left(\left(\frac{1-x}{x}\right)^{\lambda} + \left(\frac{1-y}{y}\right)^{\lambda}\right)^{1/\lambda}}$$

if $\lambda \in (0, \infty)$.

-the Aczel-Alsina family $\{T_{\lambda}^{AA}\}_{\lambda \in [0,\infty]}$, defined by T_{D} , if $\lambda = 0$, T_{M} , if $\lambda = \infty$ and

$$T_{\lambda}^{\text{AA}}(x, y) = e^{-\left(\left|\log x\right|^{\lambda} + \left|\log y\right|^{\lambda}\right)^{1/2}}$$

if $\lambda \in (0, \infty)$.

A *t*-norm T can be extended (by associativity) in a unique way to an n-array operation taking for $(x_1, \ldots, x_n) \in [0,1]^n$ the value $T(x_1, \ldots, x_n)$ defined by

$$T_{i=1}^{0} x_{i} = 1, T_{i=1}^{n} x_{i} = T(T_{i=1}^{n-1} x_{i}, x_{n}) = T(x_{1}, ..., x_{n}).$$

T can also be extended to a countable operation taking for any sequence $(x_n)_{n \in \mathbb{N}}$ in [0,1] the value

$$T_{i=1}^{\infty} x_i = \lim_{n \to \infty} T_{i=1}^n x_i. \tag{2.1}$$

The limit on the right side of (2.1) exists, since the sequence $\{T_{i=1}^n x_i\}_{n\in\mathbb{N}}$ is non-increasing and bounded from below.

Proposition 2.1. [30] (1) For $T \ge T_L$ the following implication holds:

$$\lim_{n\to\infty} \mathsf{T}_{i=1}^\infty x_{n+i} = 1 \Leftrightarrow \sum_{n=1}^\infty \left(1-x_n\right) < \infty.$$

(2) If T is of Hadžić-type then

$$\lim_{n\to\infty} \mathsf{T}_{i=1}^\infty x_{n+i} = 1$$

for every sequence $\{x_n\}_{n\in N}$ in [0, 1] such that $\lim_{n\to\infty}x_n=1$.

(3) If
$$T \in \{T_{\lambda}^{AA}\}_{\lambda \in (0,\infty)} \cup \{T_{\lambda}^{D}\}_{\lambda \in (0,\infty)}$$
, then

$$\lim_{n\to\infty} T^{\infty}_{i=1} x_{n+i} = 1 \Leftrightarrow \sum_{n=1}^{\infty} (1-x_n)^{\alpha} < \infty.$$

(4) If
$$T \in \{T_{\lambda}^{sw}\}_{\lambda \in [-1,\infty)}$$
, then

$$\lim_{n\to\infty} \mathrm{T}_{i=1}^\infty x_{n+i} = 1 \Leftrightarrow \sum_{n=1}^\infty \left(1-x_n\right) < \infty.$$

3. L-Fuzzy normed spaces

The theory of fuzzy sets was introduced by Zadeh [31]. After the pioneering study of Zadeh, there has been a great effort to obtain fuzzy analogs of classical theories. Among other fields, a progressive development is made in the field of fuzzy topology [32-40,43-50]. One of the problems in $\mathcal L$ -fuzzy topology is to obtain an appropriate concept of $\mathcal L$ -fuzzy metric spaces and $\mathcal L$ -fuzzy normed spaces. Saadati and Park [40], respectively, introduced and studied a notion of intuitionistic fuzzy metric (normed) spaces and then Deschrijver et al. [41] generalized the concept of intuitionistic fuzzy

metric (normed) spaces and studied a notion of \mathcal{L} -fuzzy metric spaces and \mathcal{L} -fuzzy normed spaces (also, see [41,42,51-55]). In this section, we give some definitions and related lemmas for our main results.

In this section, we give some definitions and related lemmas which are needed later.

Definition 3.1 ([43]). Let $\mathcal{L} = (L, \leq_L)$ be a complete lattice and U be a non-empty set called universe. A \mathcal{L} -fuzzy set \mathcal{A} on U is defined as a mapping $\mathcal{A} : U \to L$. For any $u \in U$, $\mathcal{A}(u)$ represents the degree (in L) to which u satisfies \mathcal{A} .

Lemma 3.2 ([44]). Consider the set L^* and operation \leq_{L*} defined by:

$$L^* = \{(x_1, x_2) : (x_1, x_2) \in [0, 1]^2 \text{ and } x_1 + x_2 \le 1\},$$

 $(x_1, x_2) \leq_{L^*} (\gamma_1, \gamma_2) \Leftrightarrow x_1 \leq \gamma_1 \text{ and } x_2 \geq \gamma_2 \text{ for all } (x_1, x_2), (y_1, y_2) \in L^*. \text{ Then } (L^*, \leq_{L^*}) \text{ is a complete lattice.}$

Definition 3.3 ([45]). An *intuitionistic fuzzy set* $A_{\zeta,\eta}$ on a universe U is an object $A_{\zeta,\eta} = \{(\zeta_A(u), \eta_A(u)) : u \in U\}$, where, for all $u \in U$, $\zeta_A(u) \in [0,1]$ and $\eta_A(u) \in [0,1]$ are called the *membership degree* and the *non-membership degree*, respectively, of u in $A_{\zeta,\eta}$ and, furthermore, satisfy $\zeta_A(u) + \eta_A(u) \leq 1$.

In Section 2, we presented the classical definition of *t*-norm, which can be easily extended to any lattice $\mathcal{L} = (L, \leq_L)$. Define first $0_{\mathcal{L}} = \inf L$ and $1_{\mathcal{L}} = \sup L$.

Definition 3.4. A triangular norm (*t*-norm) on \mathcal{L} is a mapping $\mathcal{T}: L^2 \to L$ satisfying the following conditions:

- (i) for any $x \in L$, $\mathcal{T}(x, 1_{\mathcal{L}}) = x$ (: boundary condition);
- (ii) for any $(x, y) \in L^2$, $\mathcal{T}(x, y) = \mathcal{T}(y, x)$ (: commutativity);
- (iii) for any $(x, y, z) \in L^3$, $\mathcal{T}(x, \mathcal{T}(y, z)) = \mathcal{T}(\mathcal{T}(x, y), z)$ (: associativity);
- (iv) for any $(x, x', \gamma, \gamma') \in L^4$, $x \le_L x'$ and $\gamma \le_L \gamma' \Rightarrow \mathcal{T}(x, \gamma) \le_L \mathcal{T}(x', \gamma')$ (: monotonicity).

A *t*-norm can also be defined recursively as an (n + 1)-array operation $(n \in \mathbb{N} \setminus \{0\})$ by $\mathcal{T}^1 = \mathcal{T}$ and

$$\mathcal{T}^n(x_{(1)}, \ldots, x_{(n+1)}) = \mathcal{T}(\mathcal{T}^{n-1}(x_{(1)}, \ldots, x_{(n)}), x_{(n+1)}), \quad \forall n \geq 2, x_{(i)} \in L.$$

The *t*-norm **M** defined by

$$M(x, y) = \begin{cases} x \text{ if } x \leq_L y \\ y \text{ if } y \leq_L x \end{cases}$$

is a continuous t-norm.

Definition 3.5. A *t*-norm \mathcal{T} on L^* is said to be *t*-representable if there exist a *t*-norm T and a *t*-conorm S on [0,1] such that

$$\mathcal{T}(x, y) = (T(x_1, y_1), S(x_2, y_2)), \quad \forall x = (x_1, x_2), y = (y_1, y_2) \in L^*.$$

Definition 3.6. A *negation* on \mathcal{L} is any strictly decreasing mapping $\mathcal{N}(0_{\mathcal{L}}) = 1_{\mathcal{L}}$ satisfying $\mathcal{N}(0_{\mathcal{L}}) = 1_{\mathcal{L}}$ and $\mathcal{N}(1_{\mathcal{L}}) = 0_{\mathcal{L}}$. If $\mathcal{N}(\mathcal{N}(x)) = x$ for all $x \in \mathcal{L}$, then \mathcal{N} is called an *involutive negation*.

In this article, let $\mathcal{N}: L \to L$ be a given mapping. The negation N_s on ([0,1], \leq) defined as $N_s(x) = 1 - x$ for all $x \in [0, 1]$ is called the *standard negation* on ([0,1], \leq).

Definition 3.7. The 3-tuple $(V, \mathcal{P}, \mathcal{T})$ is said to be a \mathcal{L} -fuzzy normed space if V is a vector space, \mathcal{T} is a continuous t-norm on \mathcal{L} and \mathcal{P} is a \mathcal{L} -fuzzy set on $V \times]0, +\infty[$ satisfying the following conditions: for all $x, y \in V$ and $t, s \in]0, +\infty[$,

- (i) $0_{\mathcal{L}} <_L \mathcal{P}(x, t)$;
- (ii) $\mathcal{P}(x, t) = 1_{\mathcal{L}}$ if and only if x = 0;
- (iii) $\mathcal{P}(\alpha x, t) = \mathcal{P}(x, \frac{t}{|\alpha|})$ for all $\alpha \neq 0$;
- (iv) $\mathcal{T}(\mathcal{P}(x, t), \mathcal{P}(y, s)) \leq_L \mathcal{P}(x + y, t + s);$
- (v) $\mathcal{P}(x, \cdot):]0, \infty[\to L \text{ is continuous};$
- (vi) $\lim_{t\to 0} \mathcal{P}(x, t) = 0_{\mathcal{L}}$ and $\lim_{t\to \infty} \mathcal{P}(x, t) = 1_{\mathcal{L}}$.

In this case, \mathcal{P} is called a \mathcal{L} -fuzzy norm. If $\mathcal{P} = \mathcal{P}_{\mu,\nu}$ is an intuitionistic fuzzy set and the t-norm \mathcal{T} is t-representable, then the 3-tuple $(V, \mathcal{P}_{\mu,\nu}, \mathcal{T})$ is said to be an *intuitionistic fuzzy normed space*.

Definition 3.8. (1) A sequence $\{x_n\}$ in X is called a *Cauchy sequence* if, for any $\varepsilon \in L \setminus \{0_L\}$ and t > 0, there exists a positive integer n_0 such that

$$\mathcal{N}(\varepsilon) <_L \mathcal{P}(x_{n+p} - x_n, t), \quad \forall n \geq n_0, p > 0.$$

- (2) If every Cauchy sequence is convergent, then the \mathcal{L} -fuzzy norm is said to be *complete* and the \mathcal{L} -fuzzy normed space is called a \mathcal{L} -fuzzy Banach space, where \mathcal{N} is an involutive negation.
- (3) The sequence $\{x_n\}$ is said to be *convergent* to $x \in V$ in the \mathcal{L} -fuzzy normed space $(V, \mathcal{P}, \mathcal{T})$ (denoted by $x_n \xrightarrow{\mathcal{P}} x$)if $\mathcal{P}(x_n x, t) \to 1_{\mathcal{L}}$, whenever $n \to +\infty$ for all t > 0. **Lemma 3.9** ([46]). Let \mathcal{P} be a \mathcal{L} -fuzzy norm on V. Then
 - (1) For all $x \in V$, $\mathcal{P}(x, t)$ is nondecreasing with respect to t.
 - (2) $\mathcal{P}(x-y, t) = \mathcal{P}(y-x, t)$ for all $x, y \in V$ and $t \in [0, +\infty)$.

Definition 3.10. Let $(V, \mathcal{P}, \mathcal{T})$ be a \mathcal{L} -fuzzy normed space. For any $t \in]0, +\infty[$, we define the *open ball* B(x, r, t) with center $x \in V$ and radius $r \in L \setminus \{0_{\mathcal{L}}, 1_{\mathcal{L}}\}$ as

$$B(x, r, t) = \{ y \in V : \mathcal{N}(r) <_L \mathcal{P}(x - y, t) \}.$$

4. Stability result in \mathcal{L} -fuzzy normed spaces

In this section, we study the stability of functional equations in $\mathcal L$ -fuzzy normed spaces.

Theorem 4.1. Let X be a linear space and $(Y, \mathcal{P}, \mathcal{T})$ be a complete \mathcal{L} -fuzzy normed space. If $f: \times \to Y$ is a mapping with f(0) = 0 and Q is a \mathcal{L} -fuzzy set on $X^2 \times (0, \infty)$ with the following property:

$$\mathcal{P}(3f(x+3\gamma)+f(3x-\gamma)-15f(x+\gamma)-15f(x-\gamma)-80f(\gamma),t) \\ \ge_L Q(x,\gamma,t), \quad \forall x, y \in X, \ t > 0.$$
 (4.1)

If

$$\mathcal{T}^{\infty}_{i=1}\big(Q\big(3^{n+i-1}x,0,3^{3n+2i+1}t\big)\big)=1_{\mathcal{L}}, \quad \forall x\in X,\ t>0,$$

and

$$\lim_{n \to \infty} Q(3^n x, 3^n \gamma, 3^{3n} t) = 1_{\mathcal{L}}, \quad \forall x, y \in X, \ t > 0,$$

then there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}(f(x) - C(x), t) \ge_L \mathcal{T}_{i=1}^{\infty} (Q(3^{i-1}x, 0, 3^{2i+2}t)), \quad \forall x \in X, \ t > 0.$$
(4.2)

Proof. We brief the proof because it is similar as the random case [47,27]. Putting y = 0 in (4.1), we have

$$\mathcal{P}\left(\frac{f(3x)}{27} - f(x), t\right) \ge_{L^*} Q(x, 0, 3^3 t), \quad \forall x \in X, \ t > 0.$$

Therefore, it follows that

$$\mathcal{P}\left(\frac{f(3^{k+1}x)}{3^{3(k+1)}} - \frac{f(3^kx)}{3^{3k}}, \frac{t}{3^{k+1}}\right) \ge_L Q(3^kx, 0, 3^{2(k+1)}t). \quad \forall k \ge 1, \ t > 0.$$

By the triangle inequality, it follows that

$$\mathcal{P}\left(\frac{f(3^n x)}{27^n} - f(x), t\right) \ge_L \mathcal{T}_{i=1}^n (Q(3^{i-1} x, 0, 3^{2i+2} t)), \quad \forall x \in X, \ t > 0.$$
(4.3)

In order to prove the convergence of the sequence $\left\{\frac{f(3^nx)}{27^n}\right\}$, we replace x with 3^mx in (4.3) to find that, for all m, n > 0,

$$\mathcal{P}\left(\frac{f(3^{n+m}x)}{27^{(n+m)}} - \frac{f(3^mx)}{27^m}, t\right) \geq_L \mathcal{T}_{i=1}^n (Q(3^{i+m-1}x, 0, 3^{2i+3m+2}t)), \quad \forall x \in X, \ t > 0.$$

Since the right-hand side of the inequality tends to $1_{\mathcal{L}}$ as m tends to infinity, the sequence $\left\{\frac{f(3^nx)}{3^{3n}}\right\}$ is a Cauchy sequence. Thus, we may define $C(x) = \lim_{n \to \infty} \frac{f(3^nx)}{3^{3n}}$ for all $x \in X$. Replacing x, y with 3^nx and 3^ny , respectively, in (4.1), it follows that C is a cubic mapping. To prove (4.2), take the limit as $n \to \infty$ in (4.3). To prove the uniqueness of the cubic mapping C subject to (4.2), let us assume that there exists another cubic mapping C which satisfies (4.2). Obviously, we have $C(3^nx) = 3^{3n}C(x)$ and $C'(3^nx) = 3^{3n}C'(x)$ for all $x \in X$ and $n \in \mathbb{N}$. Hence it follows from (4.2) that

$$\mathcal{P}\left(C(x) - C'(x), t\right) \\
\geq_{L} \mathcal{P}\left(C(3^{n}x) - C'(3^{n}x), 3^{3n}t\right) \\
\geq_{L} \mathcal{T}\left(\mathcal{P}\left(C(3^{n}x) - f(3^{n}x), 3^{3n-1}t\right), \mathcal{P}\left(f(3^{n}x) - C'(3^{n}x), 2^{3n-1}t\right)\right) \\
\geq_{L} \mathcal{T}\left(\mathcal{T}_{i=1}^{\infty}(Q(3^{n+i-1}x, 0, 3^{3n+2i+1}t)), \mathcal{T}_{i=1}^{\infty}(Q(3^{n+i-1}x, 0, 3^{3n+2i+1}t)\right) \\
= \mathcal{T}(1_{\mathcal{L}}, 1_{\mathcal{L}}) = 1_{\mathcal{L}}, \quad \forall x \in X, \ t > 0,$$

which proves the uniqueness of *C*. This completes the proof.

Theorem 4.2. Let X be a linear space and $(Y, \mathcal{P}, \mathcal{T})$ be a complete \mathcal{L} -fuzzy normed space. If $f: X \to Y$ is a mapping with f(0) = 0 and Q is a \mathcal{L} -fuzzy set on $X^2 \times (0, \infty)$ with the following property:

$$\mathcal{P}(f(2x+y)+f(2x-y)-2f(x+y)-2f(x-y)-12f(x),t) \tag{4.4}$$

$$\geq_L Q(x, y, t), \quad \forall x, y \in X, \ t > 0.$$

If

$$\mathcal{T}_{i=1}^{\infty}(Q(2^{n+i-1}x,0,2^{3n+2i+1}t))=1_{\mathcal{L}}, \quad \forall x \in X, \ t>0,$$

and

$$\lim_{n\to\infty} Q(2^n x, 2^n \gamma, 2^{3n} t) = 1_{\mathcal{L}}, \quad \forall x, \gamma \in X, \ t > 0,$$

then there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}(f(x) - C(x), t) \ge_L \mathcal{T}_{i=1}^{\infty} (Q(2^{i-1}x, 0, 2^{2i+1}t)), \quad \forall x \in X, \ t > 0.$$
(4.5)

Proof. We omit the proof because it is similar as the last theorem and see [28].

Corollary 4.3. Let $(X, \mathcal{P}', \mathcal{T})$ be \mathcal{L} -fuzzy normed space and $(Y, \mathcal{P}, \mathcal{T})$ be a complete \mathcal{L} -fuzzy normed space. If $f: X \to Y$ is a mapping such that

$$\mathcal{P}(f(2x+y)+f(2x-y)-2f(x+y)-2f(x-y)-12f(x),t)$$

$$\geq_L \mathcal{P}'(x+y,t), \quad \forall x,y \in X, \ t>0,$$

and

$$\lim_{n\to\infty} \mathcal{T}_{i=1}^{\infty} (\mathcal{P}'(x, 2^{2n+i+2}t)) = 1_{\mathcal{L}}, \quad \forall x \in X, \ t > 0,$$

then there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}(f(x) - C(x), t) \ge_L \mathcal{T}_{i=1}^{\infty} (\mathcal{P}'(x, 2^{i+2}t)), \quad \forall x \in X, \ t > 0.$$

Proof. See [28].

Now, we give an example to validate the main result as follows:

Example 4.4 ([28]). Let $(X, ||\cdot||)$ be a Banach space, $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T}_M)$ be an intuitionistic fuzzy normed space in which $\mathcal{T}_M(a, b) = (\min\{a_1, b_1\}, \max\{a_2, b_2\})$ and

$$\mathcal{P}_{\mu,\nu}(x,t) = \left(\frac{t}{t+||x||}, \frac{||x||}{t+||x||}\right), \quad \forall x \in X, \ t > 0,$$

also $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{T}_M)$ be a complete intuitionistic fuzzy normed space. Define a mapping $f: X \to Y$ by $f(x) = x^3 + x_0$ for all $x \in X$, where x_0 is a unit vector in X. A straightforward computation shows that

$$\mathcal{P}_{\mu,\nu}(f(2x+y)+f(2x-y)-2f(x+y)-2f(x-y)-12f(x),t) >_{I^*}\mathcal{P}_{\mu,\nu}(x+y,t), \quad \forall x,y \in X, \ t>0.$$

Also, we have

$$\lim_{n\to\infty} \mathcal{T}_{M,i=1}^{\infty} (\mathcal{P}_{\mu,\nu}(x,2^{2n+i+1}t)) = \lim_{n\to\infty} \lim_{m\to\infty} \mathcal{T}_{M,i=1}^{m} (\mathcal{P}_{\mu,\nu}(x,2^{2n+i+1}t))$$

$$= \lim_{n\to\infty} \lim_{m\to\infty} \mathcal{P}_{\mu,\nu}(x,2^{2n+2}t)$$

$$= \lim_{n\to\infty} \mathcal{P}_{\mu,\nu}(x,2^{2n+2}t)$$

$$= 1_{t*}$$

Therefore, all the conditions of Theorem 4.2 hold and so there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}_{\mu,\nu}(f(x) - C(x), t) \ge_{L^*} \mathcal{P}_{\mu,\nu}(x, 2^2 t), \quad \forall x \in X, \ t > 0.$$

5. Non-Archimedean L-fuzzy normed spaces

In 1897, Hensel [?] introduced a field with a valuation in which does not have the Archimedean property.

Definition 5.1. Let K be a field. A *non-Archimedean absolute value* on K is a function $|\cdot|:K\to [0,+\infty[$ such that, for any $a,b\in K$,

- (i) $|a| \ge 0$ and equality holds if and only if a = 0;
- (ii) |ab| = |a| |b|;
- (iii) $|a + b| \le \max\{|a|, |b|\}$ (: the strict triangle inequality).

Note that $|n| \le 1$ for each integer $n \ge 1$. We always assume, in addition, that $|\cdot|$ is non-trivial, i.e., there exists $a_0 \in \mathcal{K}$ such that $|a_0| \ne 0$, 1.

Definition 5.2. A non-Archimedean \mathcal{L} -fuzzy normed space is a triple $(V, \mathcal{P}, \mathcal{T})$, where V is a vector space, \mathcal{T} is a continuous t-norm on \mathcal{L} and \mathcal{P} is a \mathcal{L} -fuzzy set on $V \times]0$, $+\infty[$ satisfying the following conditions: for all $x, y \in V$ and $t, s \in]0, +\infty[$,

- (i) $0_{\mathcal{L}} <_L \mathcal{P}(x, t)$;
- (ii) $\mathcal{P}(x, t) = 1_{\mathcal{L}}$ if and only if x = 0;
- (iii) $\mathcal{P}(\alpha x, t) = \mathcal{P}(x, \frac{t}{|\alpha|})$ for all $\alpha \neq 0$;
- (vi) $\mathcal{T}(\mathcal{P}(x,t),\mathcal{P}(y,s)) \leq_L \mathcal{P}(x+y,\max\{t,s\});$
- (v) $\mathcal{P}(x, \cdot)$: $]0, \infty[\to L \text{ is continuous};$
- (vi) $\lim_{t\to 0} \mathcal{P}(x,t) = 0_{\mathcal{L}}$ and $\lim_{t\to \infty} \mathcal{P}(x,t) = 1_{\mathcal{L}}$.

Example 5.3. Let $(X, ||\cdot||)$ be a non-Archimedean normed linear space. Then the triple (X, \mathcal{P}, \min) , where

$$\mathcal{P}(x, t) = \begin{cases} 0, & \text{if } t \le ||x||; \\ 1, & \text{if } t > ||x||, \end{cases}$$

is a non-Archimedean \mathcal{L} -fuzzy normed space in which L = [0,1].

Example 5.4. Let $(X, ||\cdot||)$ be a non-Archimedean normed linear space. Denote $\mathcal{T}_M(a, b) = (\min\{a_1, b_1\}, \max\{a_2, b_2\})$ for all $a = (a_1, a_2), b = (b_1, b_2) \in L^*$ and $\mathcal{P}_{\mu,\nu}$ be the intuitionistic fuzzy set on $X \times]0, +\infty[$ defined as follows:

$$\mathcal{P}_{\mu,\nu}\big(x,\ t\big) = \left(\frac{t}{t+||x||}, \frac{||x||}{t+||x||}\right), \quad \forall x \in X,\ t \in \mathbb{R}^+.$$

Then $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T}_M)$ is a non-Archimedean intuitionistic fuzzy normed space.

6. \mathcal{L} -fuzzy Hyers-Ulam-Rassias stability for cubic functional equations in non-Archimedean \mathcal{L} -fuzzy normed space

Let K be a non-Archimedean field, X be a vector space over K and $(Y, \mathcal{P}, \mathcal{T})$ be a non-Archimedean \mathcal{L} -fuzzy Banach space over K. In this section, we investigate the stability of the cubic functional equation (1.1).

Next, we define a \mathcal{L} -fuzzy approximately cubic mapping. Let Ψ be a \mathcal{L} -fuzzy set on $X \times X \times [0, \infty)$ such that Ψ (x, y, \cdot) is nondecreasing,

$$\Psi(cx, cx, t) \ge_L \Psi\left(x, x, \frac{t}{|c|}\right), \quad \forall x \in X, c \ne 0$$

and

$$\lim_{t\to\infty} \Psi(x, \ \gamma, \ t) = 1_{\mathcal{L}}, \quad \forall x, \ \gamma \in X, \ t > 0.$$

Definition 6.1. A mapping $f: X \to Y$ is said to be Ψ -approximately cubic if

$$\mathcal{P}(3f(x+3\gamma)+f(3x-\gamma)-15f(x+\gamma)-15f(x-\gamma)-80f(\gamma), t)$$

$$\geq_{L}\Psi(x, y, t), \quad \forall x, y \in X, t > 0.$$
(6.1)

Here, we assume that $3 \neq 0$ in \mathcal{K} (i.e., characteristic of \mathcal{K} is not 3).

Theorem 6.2. Let K be a non-Archimedean field, X be a vector space over K and $(Y, \mathcal{P}, \mathcal{T})$ be a non-Archimedean L-fuzzy Banach space over K: Let $f: X \to Y$ be a Ψ -approximately cubic mapping. If there exist a $\alpha \in \mathbb{R}$ ($\alpha > 0$) and an integer $k, k \geq 2$ with $|3^k| < \alpha$ and $|3| \neq 1$ such that

$$\Psi(3^{-k}x, 3^{-k}y, t) \ge_L \Psi(x, y, \alpha t), \quad \forall x, y \in X, t > 0, \tag{6.2}$$

and

$$\lim_{n\to\infty}\mathcal{T}_{j=n}^{\infty}\mathcal{M}\left(x,\ \frac{\alpha^{j}t}{|3|^{kj}}\right)=1_{\mathcal{L}},\quad\forall x\in X,\ t>0,$$

then there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}(f(x) - C(x), t) \ge \mathcal{T}_{i=1}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{i+1}t}{|3|^{ki}}\right), \quad \forall x \in X, t > 0,$$

$$(6.3)$$

where

$$\mathcal{M}(x, t) := \mathcal{T}(\Psi(x, 0, t), \Psi(3x, 0, t), \dots, \Psi(3^{k-1}x, 0, t)), \forall x \in X, t > 0.$$

Proof. First, we show, by induction on j, that, for all $x \in X$, t > 0 and $j \ge 1$,

$$\mathcal{P}(f(3^{j}x) - 27^{j}f(x), t) >_{t} \mathcal{M}_{i}(x, t) := \mathcal{T}(\Psi(x, 0, t), \dots, \Psi(3^{j-1}x, 0, t)). \tag{6.4}$$

Putting y = 0 in (6.1), we obtain

$$\mathcal{P}(f(3x) - 27f(x), t) \ge_L \Psi(x, 0, t), \quad \forall x \in X, t > 0.$$

This proves (6.4) for j = 1. Let (6.4) hold for some j > 1. Replacing y by 0 and x by $3^j x$ in (6.1), we get

$$\mathcal{P}(f(3^{j+1}x) - 27f(3^{j}x), t) >_{L} \Psi(3^{j}x, 0, t), \forall x \in X, t > 0.$$

Since $|27| \le 1$, it follows that

$$\mathcal{P}(f(3^{j+1}x) - 27^{j+1}f(x), t) \\
\geq_{L} \mathcal{T}\left(\mathcal{P}(f(3^{j+1}x) - 27f(3^{j}x), t), \mathcal{P}(8f(3^{j}x) - 27^{j+1}f(x), t)\right) \\
= \mathcal{T}\left(\mathcal{P}(f(2^{j+1}x) - 8f(2^{j}x), t), \mathcal{P}\left(f(3^{j}x) - 27^{j}f(x), \frac{t}{|27|}\right)\right) \\
\geq_{L} \mathcal{T}\left(\mathcal{P}(f(3^{j+1}x) - 27f(3^{j}x), t), \mathcal{P}(f(3^{j}x) - 27^{j}f(x), t)\right) \\
\geq_{L} \mathcal{T}(\Psi(3^{j}x, 0, t), \mathcal{M}_{j}(x, t)) \\
= \mathcal{M}_{j+1}(x, t), \quad \forall x \in X, t > 0.$$

Thus (6.4) holds for all $i \ge 1$. In particular, we have

$$\mathcal{P}(f(3^k x) - 27^k f(x), t) \ge_L \mathcal{M}(x, t), \quad \forall x \in X, t > 0.$$
 (6.5)

Replacing x by $3^{-(kn+k)}x$ in (6.5) and using the inequality (6.2), we obtain

$$\mathcal{P}\left(f\left(\frac{x}{3^{kn}}\right) - 27^k f\left(\frac{x}{3^{kn+k}}\right), \ t\right) \geq_L \mathcal{M}\left(\frac{x}{3^{kn+k}}, \ t\right)$$
$$\geq_L \mathcal{M}(x, \ \alpha^{n+1}t) \quad \forall x \in X, \ t > 0, \ n \geq 0$$

and so

$$\mathcal{P}\left(\left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{k}\right)^{n}}\right) - \left(3^{3k}\right)^{n+1} f\left(\frac{x}{\left(3^{k}\right)^{n+1}}\right), \ t\right)$$

$$\geq_{L} \mathcal{M}\left(x, \frac{\alpha^{n+1}}{\left|\left(3^{3k}\right)^{n}\right|} t\right)$$

$$\geq_{L} \mathcal{M}\left(x, \frac{\alpha^{n+1}}{\left|\left(3^{k}\right)^{n}\right|} t\right), \quad \forall x \in X, \ t > 0, \ n \geq 0.$$

Hence, it follow that

$$\mathcal{P}\left(\left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{k}\right)^{n}}\right) - \left(3^{3k}\right)^{n+p} f\left(\frac{x}{\left(3^{k}\right)^{n+p}}\right), \ t\right)$$

$$\geq_{L} \mathcal{T}_{j=n}^{n+p} \left(\mathcal{P}\left(\left(3^{3k}\right)^{j} f\left(\frac{x}{\left(3^{k}\right)^{j}}\right) - \left(3^{3k}\right)^{j+p} f\left(\frac{x}{\left(3^{k}\right)^{j+p}}\right), \ t\right)\right)$$

$$\geq_{L} \mathcal{T}_{j=n}^{n+p} \mathcal{M}\left(x, \frac{\alpha^{j+1}}{\left|\left(3^{k}\right)^{j}\right|} t\right), \quad \forall x \in X, \ t > 0, \ n \geq 0.$$

Since
$$\lim_{n\to\infty} \mathcal{T}_{j=n}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{j+1}}{\left|\left(3^k\right)^j\right|} t\right) = 1_{\mathcal{L}} \text{ for all } x \in X \text{ and } t > 0, \left\{\left(3^{3k}\right)^n f\left(\frac{x}{\left(3^k\right)^n}\right)\right\}_{n\in\mathbb{N}}$$

is a Cauchy sequence in the non-Archimedean \mathcal{L} -fuzzy Banach space $(Y, \mathcal{P}, \mathcal{T})$. Hence we can define a mapping $C: X \to Y$ such that

$$\lim_{n \to \infty} \mathcal{P}\left(\left(3^{3k}\right)^n f\left(\frac{x}{\left(3^k\right)^n}\right) - C(x), t \right) = 1_{\mathcal{L}}, \quad \forall x \in X, \ t > 0.$$
 (6.6)

Next, for all $n \ge 1$, $x \in X$ and t > 0, we have

$$\begin{split} &\mathcal{P}\left(f(x) - \left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{k}\right)^{n}}\right), \ t\right) \\ &= \mathcal{P}\left(\sum_{i=0}^{n-1} (3^{3k})^{i} f\left(\frac{x}{\left(3^{k}\right)^{i}}\right) - \left(3^{3k}\right)^{i+1} f\left(\frac{x}{\left(3^{k}\right)^{i+1}}\right), \ t\right) \\ &\geq_{L} \mathcal{T}_{i=0}^{n-1} \left(\mathcal{P}\left(\left(3^{3k}\right)^{i} f\left(\frac{x}{\left(3^{k}\right)^{i}}\right) - \left(3^{3k}\right)^{i+1} f\left(\frac{x}{\left(3^{k}\right)^{i+1}}\right), \ t\right)\right) \\ &\geq_{L} \mathcal{T}_{i=0}^{n-1} \mathcal{M}\left(x, \frac{\alpha^{i+1} t}{|3^{k}|^{i}}\right) \end{split}$$

and so

$$\mathcal{P}(f(x) - C(x), t)$$

$$\geq_{L} \mathcal{T}\left(\mathcal{P}\left(f(x) - \left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{k}\right)^{n}}\right), t\right), \mathcal{P}\left(\left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{k}\right)^{n}}\right) - C(x), t\right)\right)$$

$$\geq_{L} \mathcal{P}\left(\mathcal{T}_{i=0}^{n-1} \mathcal{M}\left(x, \frac{\alpha^{i+1} t}{\left|3^{k}\right|^{i}}\right), \mathcal{P}(\left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{k}\right)^{n}}\right) - C(x), t\right)\right).$$

Taking the limit as $n \to \infty$ in (6.7), we obtain

$$\mathcal{P}(f(x) - C(x), t) \geq_L \mathcal{T}_{i=1}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{i+1}t}{|3^k|^i}\right),$$

which proves (6.3). As \mathcal{T} is continuous, from a well known result in \mathcal{L} -fuzzy (probabilistic) normed space (see, [51, Chap. 12]), it follows that

$$\lim_{n \to \infty} \mathcal{P}((27^k)^n f(3^{-kn}(x+3\gamma)) + (27^k)^n f(3^{-kn}(3x-\gamma)) - 15(27^k)^n f(3^{-kn}(x+\gamma))$$

$$-15(27^k)^n f(3^{-kn}(x-\gamma)) - 80(27^k)^n f(3^{-kn}\gamma), t)$$

$$= \mathcal{P}(C(x+3\gamma) + C(3x-\gamma) - 15C(x+\gamma) - 15C(x-\gamma) - 80C(\gamma), t), \quad \forall t > 0.$$

On the other hand, replacing x, y by $3^{-kn}x$, $3^{-kn}y$ in (6.1) and (6.2), we get

$$\mathcal{P}((27^{k})^{n}f(3^{-kn}(x+3\gamma)) + (27^{k})^{n}f(3^{-kn}(3x-\gamma)) - 15(27^{k})^{n}f(3^{-kn}(x+\gamma))$$

$$-15(27^{k})^{n}f(3^{-kn}(x-\gamma)) - 80(27^{k})^{n}f(3^{-kn}\gamma), t)$$

$$\geq_{L}\Psi\left(3^{-kn}x, 3^{-kn}\gamma, \frac{t}{|3^{3k}|^{n}}\right)$$

$$\geq_{L}\Psi\left(x, \gamma, \frac{\alpha^{n}t}{|3^{k}|^{n}}\right), \quad \forall x, \gamma \in X, t > 0.$$

Since $\lim_{n\to\infty} \Psi\left(x, \gamma, \frac{\alpha^n t}{|3^k|^n}\right) = 1_{\mathcal{L}}$, we infer that C is a cubic mapping.

For the uniqueness of C, let $C': X \to Y$ be another cubic mapping such that

$$\mathcal{P}(C'(x) - f(x), t) \ge_L \mathcal{M}(x, t), \quad \forall x \in X, t > 0.$$

Then we have, for all $x, y \in X$ and t > 0,

$$\mathcal{P}(C(x) - C'(x), t)$$

$$\geq_{L} \mathcal{T}\left(\mathcal{P}\left(C(x) - \left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{k}\right)^{n}}\right), t\right), \mathcal{P}\left(\left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{k}\right)^{n}}\right) - C'(x), t\right), t\right)\right).$$

Therefore, from (6.6), we conclude that C = C'. This completes the proof.

Corollary 6.3. Let K be a non-Archimedean field, X be a vector space over K and $(Y, \mathcal{P}, \mathcal{T})$ be a non-Archimedean L-fuzzy Banach space over K under a t-norm $\mathcal{T} \in \mathcal{H}$. Let $f: X \to Y$ be a Ψ -approximately cubic mapping. If there exist $\alpha \in \mathbb{R}$ $(\alpha > 0), |3| \neq 1$ and an integer $k, k \geq 3$ with $|3^k| < \alpha$ such that

$$\Psi(3^{-k}x, 3^{-k}\gamma, t) \ge_L \Psi(x, \gamma, \alpha t), \quad \forall x, \gamma \in X, t > 0,$$

then there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}(f(x) - C(x), t) \ge_L \mathcal{T}_{i=1}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{i+1}t}{|3|^{ki}}\right), \quad \forall x \in X, t > 0,$$

where

$$\mathcal{M}(x, t) := \mathcal{T}(\Psi(x, 0, t), \Psi(3x, 0, t), \dots, \Psi(3^{k-1}x, 0, t)), \forall x \in X, t > 0.$$

Proof. Since

$$\lim_{n\to\infty} \mathcal{M}\left(x, \ \frac{\alpha^j t}{|3|^{kj}}\right) = 1_{\mathcal{L}}, \quad \forall x\in X, \ t>0,$$

and \mathcal{T} is of Hadžić type, it follows from Proposition 2.1 that

$$\lim_{n\to\infty}\mathcal{T}_{j=n}^{\infty}\mathcal{M}\left(x,\ \frac{\alpha^{j}t}{|3|^{kj}}\right)=1_{\mathcal{L}},\quad\forall x\in X,\ t>0.$$

Now, if we apply Theorem 6.2, we get the conclusion.

Now, we give an example to validate the main result as follows:

Example 6.4. Let $(X, ||\cdot||)$ be a non-Archimedean Banach space, $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T}_M)$ be non-Archimedean \mathcal{L} -fuzzy normed space (intuitionistic fuzzy normed space) in which

$$\mathcal{P}_{\mu,\nu}(x, t) = \left(\frac{t}{t + ||x||}, \frac{||x||}{t + ||x||}\right), \quad \forall x \in X, \ t > 0,$$

and $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{T}_M)$ be a complete non-Archimedean \mathcal{L} -fuzzy normed space (intuitionistic fuzzy normed space) (see, Example 5.4). Define

$$\Psi\big(x,\ \gamma,\ t\big) = \left(\frac{t}{1+t},\ \frac{1}{1+t}\right),\quad \forall x,\ \gamma\in X,\ t>0.$$

It is easy to see that (6.2) holds for $\alpha = 1$. Also, since

$$\mathcal{M}(x, t) = \left(\frac{t}{1+t}, \frac{1}{1+t}\right), \quad \forall x \in X, t > 0,$$

we have

$$\lim_{n\to\infty} \mathcal{T}_{M,j=n}^{\infty} \mathcal{M}\left(x, \ \frac{\alpha^{j}t}{|3|^{kj}}\right) = \lim_{n\to\infty} \left(\lim_{m\to\infty} \mathcal{T}_{M,j=n}^{m} \mathcal{M}\left(x, \ \frac{t}{|3|^{kj}}\right)\right)$$

$$= \lim_{n\to\infty} \lim_{m\to\infty} \left(\frac{t}{t+|3^{k}|^{n}}, \ \frac{|2^{k}|^{n}}{t+|3^{k}|^{n}}\right)$$

$$= (1,0) = 1_{L^{*}}, \quad \forall x \in X, \quad t > 0.$$

Let $f: X \to Y$ be a Ψ -approximately cubic mapping. Therefore, all the conditions of Theorem 6.2 hold and so there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}_{\mu,\nu}(f(x) - C(x), t) \ge_{L^*} \left(\frac{t}{t + |3^k|}, \frac{|3^k|}{t + |3^k|}\right), \quad \forall x \in X, t > 0.$$

Definition 6.5. A mapping $f: X \to Y$ is said to be Ψ -approximately cubic I if

$$\mathcal{P}(f(2x+y)+f(2x-y)-2f(x+y)-2f(x-y)-12f(x),t) \tag{6.8}$$

$$\geq_L \Psi(x, y, t), \quad \forall x, y \in X, t > 0.$$

In this section, we assume that $2 \neq 0$ in \mathcal{K} (i.e., the characteristic of \mathcal{K} is not 2).

Theorem 6.6. Let K be a non-Archimedean field, X be a vector space over K and $(Y, \mathcal{P}, \mathcal{T})$ be a non-Archimedean \mathcal{L} -fuzzy Banach space over K. Let $f: X \to Y$ be a Y-

approximately cubic I mapping. If $|2| \neq 1$ and for some $\alpha \in \mathbb{R}$, $\alpha > 0$, and some integer $k, k \geq 2$ with $|2^k| < \alpha$,

$$\Psi(2^{-k}x, 2^{-k}y, t) \ge_L \Psi(x, y, \alpha t), \quad \forall x, y \in X, t > 0, \tag{6.9}$$

and

$$\lim_{n\to\infty}\mathcal{T}_{j=n}^{\infty}\mathcal{M}\left(x,\ \frac{\alpha^{j}t}{|2|^{kj}}\right)=1_{\mathcal{L}},\quad\forall x\in X,\ t>0,$$

then there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}(f(x) - C(x), t) \ge \mathcal{T}_{i=1}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{i+1}t}{|2|^{ki}}\right), \quad \forall x \in X, t > 0,$$
(6.10)

where

$$\mathcal{M}(x, t) := \mathcal{T}(\Psi(x, 0, t), \Psi(2x, 0, t), \dots, \Psi(2^{k-1}x, 0, t)), \forall x \in X, t > 0.$$

Proof. We omit the proof because it is similar as the random case (see, [28]).

Corollary 6.7. Let K be a non-Archimedean field, X be a vector space over K and $(Y, \mathcal{P}, \mathcal{T})$ be a non-Archimedean \mathcal{L} -fuzzy Banach space over K under a t-norm $\mathcal{T} \in \mathcal{H}$. Let $f: X \to Y$ be a Ψ -approximately cubic I mapping. If there exist a $\alpha \in \mathbb{R}$ ($\alpha > 0$) and an integer $k, k \geq 2$ with $|2^k| < \alpha$ such that

$$\Psi(2^{-k}x, 2^{-k}y, t) \ge \Psi(x, y, \alpha t), \quad \forall x, y \in X, t > 0,$$

then there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}(f(x)-C(x),\ t)\geq_L \mathcal{T}_{i=1}^{\infty}\mathcal{M}\left(x,\ \frac{\alpha^{i+1}t}{|2|^{ki}}\right),\quad \forall x\in X,\ t>0,$$

where

$$\mathcal{M}(x, t) := \mathcal{T}(\Psi(x, 0, t), \Psi(2x, 0, t), \dots, \Psi(2^{k-1}x, 0, t)), \forall x \in X, t > 0.$$

Proof. Since

$$\lim_{n\to\infty}\mathcal{M}\left(x,\;\frac{\alpha^{j}t}{|2|^{kj}}\right)=1_{\mathcal{L}},\quad\forall x\in X,\;t>0,$$

and $\mathcal T$ is of Hadžić type, it follows from Proposition 2.1 that

$$\lim_{n\to\infty}\mathcal{T}_{j=n}^{\infty}\mathcal{M}\left(x,\ \frac{\alpha^{j}t}{|2|^{kj}}\right)=1_{\mathcal{L}},\quad\forall x\in X,\ t>0.$$

Now, if we apply Theorem 6.2, we get the conclusion.

Now, we give an example to validate the main result as follows:

Example 6.8. Let $(X, ||\cdot||)$ be a non-Archimedean Banach space, $(X, \mathcal{P}_{\mu,\nu}, \mathcal{T}_M)$ be non-Archimedean \mathcal{L} -fuzzy normed space (intuitionistic fuzzy normed space) in which

$$\mathcal{P}_{\mu,\nu}(x, t) = \left(\frac{t}{t + ||x||}, \frac{||x||}{t + ||x||}\right), \quad \forall x \in X, \ t > 0,$$

and $(Y, \mathcal{P}_{\mu,\nu}, \mathcal{T}_M)$ be a complete non-Archimedean \mathcal{L} -fuzzy normed space (intuitionistic fuzzy normed space) (see, Example 5.4). Define

$$\Psi(x, \gamma, t) = \left(\frac{t}{1+t}, \frac{1}{1+t}\right), \quad \forall x, \gamma \in X, t > 0.$$

It is easy to see that (6.9) holds for $\alpha = 1$. Also, since

$$\mathcal{M}(x, t) = \left(\frac{t}{1+t}, \frac{1}{1+t}\right), \quad \forall x \in X, t > 0,$$

we have

$$\lim_{n\to\infty} \mathcal{T}_{M,j=n}^{\infty} \mathcal{M}\left(x, \ \frac{\alpha^{j}t}{|2|^{kj}}\right) = \lim_{n\to\infty} \left(\lim_{m\to\infty} \mathcal{T}_{M,j=n}^{m} \mathcal{M}\left(x, \ \frac{t}{|2|^{kj}}\right)\right)$$

$$= \lim_{n\to\infty} \lim_{m\to\infty} \left(\frac{t}{t+|2^{k}|^{n}}, \ \frac{|2^{k}|^{n}}{t+|2^{k}|^{n}}\right)$$

$$= (1,0) = 1_{L^{*}}, \quad \forall x \in X, \ t > 0.$$

Let $f: X \to Y$ be a Ψ -approximately cubic I mapping. Therefore, all the conditions of Theorem 6.6 hold and so there exists a unique cubic mapping $C: X \to Y$ such that

$$\mathcal{P}_{\mu,\nu}(f(x)-C(x),\ t)\geq_{L^*}\left(\frac{t}{t+|2^k|},\ \frac{|2^k|}{t+|2^k|}\right),\quad \forall x\in X,\ t>0.$$

Definition 6.9. A mapping $f: X \to Y$ is said to be Ψ -approximately cubic II if

$$P(f(3x + y) + f(3x - y) - 3f(x + y) - 3f(x - y) - 48f(x), t) >_t \Psi(x, y, t), \quad \forall x, y \in X, t > 0.$$
(6.11)

Here, we assume that $3 \neq 0$ in \mathcal{K} (i.e., the characteristic of \mathcal{K} is not 3).

Theorem 6.10. Let K be a non-Archimedean field, X be a vector space over K and (Y, \mathcal{P}, T) be a non-Archimedean L-fuzzy Banach space over K. Let $f: X \to Y$ be a Y-approximately cubic II function. If $|3| \neq 1$ and, for some $\alpha \in \mathbb{R}$, $\alpha > 0$, and some integer $k, k \geq 3$, with $|3^k| < \alpha$,

$$\Psi\left(3^{-k}x, \, 3^{-k}y, \, t\right) \ge_L \Psi\left(x, \, y, \, \alpha t\right), \quad \forall x, \, y \in X, \, t \, > \, 0, \tag{6.12}$$

and

$$\lim_{n \to \infty} \mathcal{T}_{j=n}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{j} t}{|3|^{kj}}\right) = 1_{\mathcal{L}}, \quad \forall x \in X, \ t > 0,$$
(6.13)

then there exists a unique cubic mapping $C: X \to Y$ such tha

$$\mathcal{P}\left(f\left(x\right) - C\left(x\right), t\right) \geq T_{i=1}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{i+1} t}{|3|^{ki}}\right), \tag{6.14}$$

for all $x \in X$ and t > 0, where

$$\mathcal{M}\left(x,\,t\right)\,:=\,\mathcal{T}\left(\Psi\left(x,\,0,\,2t\right),\,\Psi\left(3x,\,0,\,2t\right),\,\ldots,\,\Psi\left(3^{k-1}x,\,0,\,2t\right)\right),\quad\forall x\,\in\,X,\,\,t\,>\,0.$$

Proof. First, we show, by induction on *j*, that, for all $x \in X$, t > 0 and $j \ge 1$,

$$\mathcal{P}\left(f\left(3^{j}x\right)-27^{j}f\left(x\right),\,t\right)\geq_{L}\mathcal{M}_{i}\left(x,\,t\right):=\mathcal{T}\left(\Psi\left(x,\,0,\,2t\right),\,\ldots,\,\Psi\left(3^{j-1}x,\,0,\,2t\right)\right).\tag{6.15}$$

Put y = 0 in (6.11) to obtain

$$\mathcal{P}(f(3x) - 27f(x), t) \ge_L \Psi(x, 0, 2t), \quad \forall x \in X, t > 0.$$
 (6.16)

This proves (6.15) for j = 1. Let (6.15) hold for some j > 1. Replacing y by 0 and x by $3^j x$ in (6.16), we get

$$\mathcal{P}\left(f\left(3^{j+1}x\right)\,-\,27f\left(3^{j}x\right),\,t\right)\geq_{L}\Psi\left(3^{j}x,\,0,\,2t\right),\quad\forall x\,\in\,X,\,\,t\,>\,0.$$

Since $|27| \le 1$, then we have

$$\begin{split} &\mathcal{P}\left(f\left(3^{j+1}\,x\right)\,-\,27^{j+1}\,f\left(x\right),\,t\right) \\ &\geq_{L}\mathcal{T}\left(\mathcal{P}\left(f\left(3^{j+1}\,x\right)\,-\,27f\left(3^{j}x\right),\,t\right),\,\mathcal{P}\left(27f\left(3^{j}\,x\right)\,-\,27^{j+1}\,f\left(x\right),\,t\right)\right) \\ &=\,\mathcal{T}\left(\mathcal{P}\left(f\left(3^{j+1}\,x\right)\,-\,27f\left(3^{j}\,x\right),\,t\right),\,\mathcal{P}\left(f\left(3^{j}\,x\right)\,-\,27^{j}\,f\left(x\right),\,\frac{t}{|27|}\right)\right) \\ &\geq_{L}\mathcal{T}\left(\mathcal{P}\left(f\left(3^{j+1}\,x\right)\,-\,27f\left(3^{j}\,x\right),\,t\right),\,\mathcal{P}\left(f\left(3^{j}\,x\right)\,-\,27^{j}\,f\left(x\right),\,t\right)\right) \\ &\geq_{L}\mathcal{T}\left(\Psi\left(3^{j}\,x,\,0,\,2t\right),\,\mathcal{M}_{j}\left(x,\,t\right)\right) \\ &=\,\mathcal{M}_{i+1}\left(x,\,t\right),\quad\forall x\in\mathcal{X}. \end{split}$$

Thus (6.15) holds for all $j \ge 1$. In particular, it follows that

$$\mathcal{P}\left(f\left(3^{k} x\right)-27^{k} f\left(x\right), t\right) \geq_{L} \mathcal{M}\left(x, t\right), \quad \forall x \in X, \ t > 0.$$

$$(6.17)$$

Replacing x by $3^{-(kn+k)}x$ in (6.17) and using inequality (6.12) we obtain

$$\mathcal{P}\left(f\left(\frac{x}{3^{kn}}\right) - 27^{k} f\left(\frac{x}{3^{kn+k}}\right), t\right) \geq_{L} \mathcal{M}\left(\frac{x}{3^{kn+k}}, t\right)$$

$$\geq_{L} \mathcal{M}\left(x, \alpha^{n+1} t\right), \quad \forall x \in X, \ t > 0, \ n \geq 0.$$
(6.18)

Then we have

$$\mathcal{P}\left(\left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{3k}\right)^{n}}\right) - \left(3^{3k}\right)^{n+1} f\left(\frac{x}{\left(3^{3k}\right)^{n+1}}\right), t\right)$$

$$\geq_{L} \mathcal{M}\left(x, \frac{\alpha^{n+1}}{\left|\left(3^{3k}\right)^{n}\right|} t\right), \quad \forall x \in X, \ t > 0, \ n \geq 0.$$

$$(6.19)$$

Hence we have

$$\mathcal{P}\left(f\left(\frac{x}{3^{kn}}\right) - 27^{k}f\left(\frac{x}{3^{kn+k}}\right), t\right) \geq_{L} \mathcal{M}\left(\frac{x}{3^{kn+k}}, t\right)$$
$$\geq_{L} \mathcal{M}\left(x, \alpha^{n+1} t\right), \quad \forall x \in X, \ t > 0, \ n \geq 0.$$

Since
$$\lim_{n\to\infty} \mathcal{T}_{j=n}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{j+1}}{\left|(3^{3k})^{j}\right|} t\right) = 1_{\mathcal{L}}$$
 for all $x \in X$ and $t > 0$, $\{k^{n} f(k^{-n} x)\}_{n \in \mathbb{N}}$ is a

Cauchy sequence in the non-Archimedean \mathcal{L} -fuzzy Banach space $(Y, \mathcal{P}, \mathcal{T})$. Hence we can define a mapping $C: X \to Y$ such that

$$\lim_{n\to\infty} \mathcal{P}\left((3^{3k})nf\left(\frac{x}{(3^k)^n}\right) - C(x), t\right) = 1_{\mathcal{L}}, \quad \forall x \in X, \ t > 0.$$
 (6.20)

Next, for all $n \ge 1$, $x \in X$ and t > 0,

$$\mathcal{P}\left(f(x) - (3^{3k})^{n} f\left(\frac{x}{(3^{k})^{n}}\right), t\right) \\
= \mathcal{P}\left(\sum_{i=0}^{n-1} (3^{3k})^{i} f\left(\frac{x}{(3^{k})^{i}}\right) - (3^{3k})^{i+1} f\left(\frac{x}{(3^{k})^{i+1}}\right), t\right) \\
\geq_{L} \mathcal{T}_{i=0}^{n-1} \left(\mathcal{P}\left((3^{3k})^{i} f\left(\frac{x}{(3^{k})^{i}}\right) - (3^{3k})^{i+1} f\left(\frac{x}{(3^{k})^{i+1}}\right), t\right)\right) \\
\geq_{L} \mathcal{T}_{i=0}^{n-1} \mathcal{M}\left(x, \frac{\alpha^{i+1} t}{|3^{3k}|^{i}}\right). \tag{6.21}$$

Therefore, we have

$$\begin{split} &\mathcal{P}\left(f\left(x\right) \,-\, C\left(x\right)\,,\,\,t\right) \\ &\geq {}_{L}\,\mathcal{T}\left(\mathcal{P}\left(f\left(x\right) \,-\, \left(3^{3k}\right)^{n}f\left(\frac{x}{\left(3^{k}\right)^{n}}\right)\,,\,\,t\right)\,,\,\,\mathcal{P}\left(\left(3^{3k}\right)^{n}f\left(\frac{x}{\left(3^{k}\right)^{n}}\right) \,-\, C\left(x\right)\,,\,\,t\right)\right) \\ &\geq_{L}\,\mathcal{P}\left(\mathcal{T}_{i=0}^{n-1}\,\mathcal{M}\left(x,\,\frac{\alpha^{i+1}\,t}{\left|3^{3k}\right|^{i}}\right)\,,\,\,\mathcal{P}\left(\left(3^{3k}\right)^{n}f\left(\frac{x}{\left(3^{k}\right)^{n}}\right) \,-\, C\left(x\right)\,,\,\,t\right)\right). \end{split}$$

By letting $n \to \infty$ in the above inequality, we obtain

$$\mathcal{P}\left(f\left(x\right) - C\left(x\right), t\right) \geq_{L} \mathcal{T}_{i=1}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{i+1}t}{\left|3^{3k}\right|^{i}}\right), \quad \forall x \in X, \ t < 0.$$

This proves (6.14). Since \mathcal{T} is continuous, from the well known result in \mathcal{L} -fuzzy (probabilistic) normed space (see, [51, Chap. 12]), it follows that

$$\lim_{n \to \infty} \mathcal{P}\left(\left(3^{k}\right)^{n} f\left(3^{-kn} \left(3x + \gamma\right)\right) + \left(3^{k}\right)^{n} f\left(3^{-kn} \left(3x - \gamma\right)\right) - 3\left(3^{k}\right)^{n} f\left(3^{-kn} \left(x + \gamma\right)\right) - 3\left(3^{k}\right)^{n} f\left(3^{-kn} \left(x - \gamma\right)\right) - 48\left(3^{k}\right)^{n} f\left(3^{-kn} x\right), t\right)$$

$$= \mathcal{P}\left(C\left(3x + \gamma\right) + C\left(3x - \gamma\right) - 3C\left(x + \gamma\right) - 3C\left(x - \gamma\right) - 48C\left(x\right), t\right), \quad \forall t > 0.$$

On the other hand, replace x, y by $3^{-kn}x$, $3^{-kn}y$ in (6.11) and (6.12) to get

$$\mathcal{P}\left(3^{k}\right)^{n} f\left(3^{-kn} \left(3x + \gamma\right)\right) + \left(3^{k}\right)^{n} f\left(3^{-kn} \left(3x - \gamma\right)\right) - 3\left(3^{k}\right)^{n} f\left(3^{-kn} \left(x + \gamma\right)\right) - 3\left(3^{k}\right)^{n} f\left(3^{-kn} \left(x - \gamma\right)\right) - 48\left(3^{k}\right)^{n} f\left(3^{-kn} \gamma\right), t\right)$$

$$\geq_{L} \Psi\left(3^{-kn} x, 3^{-kn} \gamma, \frac{t}{|3^{k}|^{n}}\right)$$

$$\geq_{L} \Psi\left(x, \gamma, \frac{\alpha^{n} t}{|3^{k}|^{n}}\right), \quad \forall x, \gamma \in X, t > 0.$$

Since $\lim_{n\to\infty} \Psi\left(x, \gamma, \frac{\alpha^n t}{|3^k|^n}\right) = 1_{\mathcal{L}}$, we infer that C is a cubic mapping.

If $C': X \to Y$ is another cubic mapping such that $\mathcal{P}(C'(x) - f(x), t) \ge_L \mathcal{M}(x, t)$ for all $x \in X$ and t > 0, then, for all $n \ge 1$, $x \in X$ and t > 0,

$$\begin{split} \mathcal{P}\left(C\left(x\right) - C'\left(x\right), t\right) \\ \geq_{L} \mathcal{T}\left(\mathcal{P}\left(C\left(x\right) - \left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{k}\right)^{n}}\right), t\right), \mathcal{P}\left(\left(3^{3k}\right)^{n} f\left(\frac{x}{\left(3^{k}\right)^{n}}\right) - C'\left(x\right), t\right), t\right)\right). \end{split}$$

Thus, from (6.20), we conclude that C = C'. This completes the proof.

Corollary 6.11. Let Kbe a non-Archimedean field, X be a vector space over K and $(Y, \mathcal{P}, \mathcal{T})$.be a non-Archimedean \mathcal{L} -fuzzy Banach space over K under a t-norm $T \in \mathcal{H}$. Let $f: X \to Y$ be a Ψ -approximately cubic II function. If, for some $\alpha \in \mathbb{R}$, $\alpha > 0$ and an integer $k, k \geq 3$, with $|3^k| < \alpha$,

$$\Psi\left(3^{-k}\,x,\,3^{-k}\gamma,\,t\right)\geq_L\Psi\left(x,\,\gamma,\,\alpha t\right),\quad\,\forall x\,\in X,\ t\,>\,0,$$

then there exists a unique cubic mapping $C: X \to Y$ such that, for all $x \in X$ and t > 0.

$$\mathcal{P}\left(f\left(x\right)-C\left(x\right),\,t\right)\geq_{L}\mathcal{T}_{i=1}^{\infty}\mathcal{M}\left(x,\,\frac{\alpha^{i+1}\,t}{\left|3\right|^{ki}}\right),$$

Where

$$\mathcal{M}\left(x,\,t\right)\,:=\,\mathcal{T}\left(\Psi\left(x,\,0,\,2t\right),\,\Psi\left(3x,\,0,\,t\right)\,,\,\ldots,\,\Psi\left(3^{k-1}\,x,\,0,\,2t\right)\right),\quad\forall x\,\in\,X,\,t\,>\,0.$$

Proof. Since

$$\lim_{n\to\infty}\mathcal{M}\left(x,\,\frac{\alpha^j\,t}{|3|^{kj}}\right)=1_{\mathcal{L}},\quad\forall x\in X,\ t>0,$$

and T is of Hadžić type, from Proposition 2.1, it follows that

$$\lim_{n\to\infty} \mathcal{T}_{j=n}^{\infty} \mathcal{M}\left(x, \frac{\alpha^{j} t}{|3|^{kj}}\right) = 1_{\mathcal{L}}, \quad \forall x \in X, \ t > 0.$$

Thus, if we apply Theorem 6.10, then we can get the conclusion. This completes the proof.

7. Conclusion

We established the Hyers-Ulam-Rassias stability of the cubic functional equations (1.1), (1.2), and (1.3) in various fuzzy spaces. In Section 4, we proved the stability of functional equations (1.1), (1.2), and (1.3) in a \mathcal{L} -fuzzy normed space under arbitrary t-norm which is a generalization of [26]. In Section 6, we proved the stability of functional equations (1.1), (1.2), and (1.3) in a non-Archimedean \mathcal{L} -fuzzy normed space. We therefore provided a link among three various discipline: fuzzy set theory, lattice theory, and mathematical analysis.

Acknowledgment

This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant Number: 2011-0021821).

Author details

¹Department of Mathematics, Texas A&M University - Kingsville, Kingsville, TX 78363, USA ²Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia ³Department of Mathematics Education and the RINS, Gyeongsang National University, Chinju 660-701, Korea ⁴Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran ⁵Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China

Authors' contributions

All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 2 December 2011 Accepted: 2 April 2012 Published: 2 April 2012

References

- 1. Ulam, SM: Problems in Modern Mathematics, Chapter VI. Science Editions, Wiley, New York (1964)
- 2. Hyers, DH: On the stability of the linear functional equation. Proc Nat Acad Sci USA. 27, 222–224 (1941)
- 3. Aoki, T: On the stability of the linear transformation in Banach spaces. J Math Soc Japan. 2, 64–66 (1950)
- 4. Rassias, ThM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc. 72, 297–300 (1978)
- 5. Baak, C, Moslehian, MS: On the stability of J*-homomorphisms. Nonlinear Anal. 63, 42–48 (2005)
- Cho, YJ, Gordji, ME, Zolfaghari, S: Solutions and stability of generalized mixed type QC functional equations in random normed spaces. J Inequal Appl (2010). Article ID 403101. 16 doi:10.1155/2010/403101
- Cho, YJ, Park, C, Saadati, R: Functional inequalities in non-Archimedean in Banach spaces. Appl Math Lett. 60, 1994–2002 (2010)
- 8. Cho, YJ, Park, C, Sadaati, R: Fuzzy functional inequalities. J Comput Anal Appl. 13, 305–320 (2011)
- Cho, YJ, Rassias, ThM, Park, C, Saadati, R: Inner product spaces and functional equations. J Comput Anal Appl. 13, 296–304 (2011)
- 10. Czerwik, S: Functional Equations and Inequalities in Several Variables. World Scientific, River Edge, NJ (2002)
- 11. Hyers, DH, Isac, G, Rassias, ThM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel (1998)
- Jung, SM: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)
- 13. Rassias, ThM: On the stability of functional equations and a problem of Ulam. Acta Appl Math. 62, 23-130 (2000)
- 14. Rassias, ThM: Functional Equations, Inequalities and Applications. Kluwer Academic Publishers, Dordrecht, Boston and London (2003)
- Mihet, D: Hyers-Ulam-Rassias stability for Jensen equation in non-Archimedean fuzzy normed spaces. In Proceedings of The Twelfth International Conference on Applied Mthematics and Computer Science, in Automat Comput Appl Math, vol. 17, pp. 5–13.Baisoara, Romania (2008). September 10-13
- Jun, KW, Kim, HM: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. J Math Anal Appl. 274, 867–878 (2002)
- Jun, KW, Kim, HM, Chang, IS: On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation. J Comput Anal Appl. 7, 21–33 (2005)
- 18. Baktash, E, Cho, YJ, Jalili, M, Saadati, R, Vaezpour, SM: On the stability of cubic mappings and quadratic mappings in random normed spaces. J Inequal Appl 2008 (2008). Article ID 902187
- Saadati, R, Vaezpour, SM, Cho, YJ: A note on the "On the stability of cubic mappings and quadratic mappings in random normed spaces". J Inequal Appl. 2009, Article ID 214530, 6 (2009)
- 20. Mirmostafaee, AK, Moslehian, MS: Fuzzy versions of Hyers-Ulam-Rassias theorem. Fuzzy Sets Syst. 159, 720-729 (2008)
- Mirmostafaee, AK, Mirzavaziri, M, Moslehian, MS: Fuzzy stability of the Jensen functional equation. Fuzzy Sets Syst. 159, 730–738 (2008)
- Alsina, C: On the stability of a functional equation arising in probabilistic normed spaces. General Inequalities 5, 263–271 (1987). Oberwolfach, 1986, Birkh?ä?user, Basel
- 23. Miheţ D Radu, V: On the stability of the additive Cauchy functional equation in random normed spaces. J Math Anal Appl. **343**, 567–572 (2008)
- 24. Mihet, D, Saadati, R, Vaezpour, SM: The stability of the quartic functional equation in random normed spaces. Acta Appl Math. doi:10.1007/s10440-009-9476-7
- 25. Shakeri, S: Intuitionistic fuzzy stability of Jensen type mapping. J Nonlinear Sci Appl. 2, 105–112 (2009)
- 26. Mirmostafaee, AK, Moslehian, MS: Fuzzy approximately cubic mappings. Inf Sci. 178, 3791–3798 (2008)
- Zhang, S-S, Rassias, JM, Saadati, R: Stability of a cubic functional equation in intuitionistic random normed spaces. Appl Math Mech., English 31(1):21–26 (2010)
- 28. Saadati, R, Vaezpour, SM, Park, C: The stability of the cubic functional equation in various spaces. Math Commun. 16, 131–145 (2011)
- 29. Hadžić, O, Pap, E: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic, Dordrecht (2001)
- Hadžić, O, Pap, E, Budincević, M: Countable extension of triangular norms and their applications to the Fixed point theory in probabilistic metric spaces. Kybernetica. 38, 363–381 (2002)
- 31. Zadeh, LA: Fuzzy sets. Inf Control. 8, 338-353 (1965)
- 32. Amini, M, Saadati, R: Topics in fuzzy metric space. J Fuzzy Math. 4, 765–768 (2003)
- 33. George, A, Veeramani, P: On some result in fuzzy metric space. Fuzzy Sets Syst. 64, 395-399 (1994)
- 34. George, A, Veeramani, P: On some result of analysis for fuzzy metric spaces. Fuzzy Sets Syst. 90, 365–368 (1997)
- 35. Gregori, V, Romaguera, S: Some properties of fuzzy metric spaces. Fuzzy Sets Syst. 115, 485–489 (2000)
- 36. Hosseini, SB, Saadati, R, Amini, M: Alexandroff theorem in fuzzy metric spaces. Math Sci Res J. 8, 357–361 (2004)
- 37. Saadati, R, Vaezpour, SM: Some results on fuzzy Banach spaces. J Appl Math Comput. 17, 475–484 (2005)
- 38. Adibi, H, Cho, YJ, O'Regan, D, Saadati, R: Common Fixed point theorems in \mathcal{L} -fuzzy metric spaces. Appl Math Comput. **182**, 820–828 (2006)
- 39. Sintunavarat, W, Cho, YJ, Kumam, P: Couple coincidence point theorems for contractions without commutative condition in intuitionistic fuzzy normed spaces. Fixed Point Theory Appl. 81 (2011)
- 40. Saadati, R, Park, J: On the intuitionistic fuzzy topological spaces. Chaos, Solitons and Fractals. 27, 331–344 (2006)
- 41. Deschrijver, G, O'Regan, D, Saadati, R, Vaezpour, SM: *L*-Fuzzy Euclidean normed spaces and compactness. Chaos, Soliton and Fractals. **42**. 40–45 (2009)
- 42. Saadati, R: On the χ -fuzzy topological spaces. Chaos, Solitons and Fractals. 37, 1419–1426 (2008)
- 43. Goguen, J: \mathcal{L} -fuzzy sets. J Math Anal Appl. 18, 145–174 (1967)
- 44. Deschrijver, G, Kerre, EE: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 23, 227–235
- 45. Atanassov, KT: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87-96 (1986)
- 46. Saadati, R: A note on "Some results on the IF-normed spaces". Chaos, Solitons and Fractals. 41, 206-213 (2009)

- 47. Agarwal, RP, Cho, YJ, Saadati, R: On random topological structures. Abstr Appl Anal, Art ID (2011). 762361, 41
- 48. Krishna, SV, Sarma, KKM: Separation of fuzzy normed linear spaces. Fuzzy Sets Syst. 63, 207–217 (1994)
- 49. Xiao, JZ, Zhu, XH: Fuzzy normed spaces of operators and its completeness. Fuzzy Sets Syst. 133, 389–399 (2003)
- 50. Katsaras, AK: Fuzzy topological vector spaces II. Fuzzy Sets Syst. 12, 143–154 (1984)
- 51. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. Elsevier, North Holand, New York (1983)
- 52. Bag, T, Samanta, SK: Finite dimensional fuzzy normed linear spaces. J Fuzzy Math. 11(3):687–705 (2003)
- 53. Biswas, R: Fuzzy inner product spaces and fuzzy norm functions. Inf Sci. 53, 185–190 (1991)
- 54. Felbin, C. Finite dimensional fuzzy normed linear space. Fuzzy Sets Syst. 48, 239–248 (1992)
- 55. Kramosil, I, Michalek, J: Fuzzy metric and statistical metric spaces. Kybernetica. 11, 326–334 (1975)

doi:10.1186/1029-242X-2012-77

Cite this article as: Agarwal et al.: Nonlinear -Fuzzy stability of cubic functional equations. Journal of Inequalities and Applications 2012 2012:77.

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com