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Abstract
In this paper, first we introduce certain new classes of Suzuki type contractions in
triangular and non-Archimedean fuzzy metric spaces. Further we establish fixed point
theorems for such kind of mappings in non-Archimedean and triangular fuzzy metric
spaces. We also prove Suzuki type fixed point results in non-Archimedean and
triangular ordered fuzzy metric spaces. The results presented here improve and
generalize certain recent results from the literature. Two illustrative examples and an
application to integral equations are given to support the usability of our results.
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1 Introduction and preliminaries
The concept of fuzzy metric space was introduced in different ways by some authors (see,
i.e., [, ]) and further to this, the fixed point theory in this kind of spaces has been in-
tensively studied (see [–]). Here, we consider the notion of fuzzy metric space intro-
duced by Kramosil and Michálek [] and modified by George and Veeramani [, ] who
obtained a Hausdorff topology for the class of fuzzy metric spaces. Recently, Miheţ []
enlarged the class of fuzzy contractive mappings of Gregori and Sapena [] and proved a
fuzzy Banach contraction result for complete non-Archimedean fuzzy metric spaces []
(see also Vetro []).

The applications of fixed point theorems are remarkable in different disciplines of math-
ematics, engineering and economics in dealing with problems arising in approximation
theory, game theory and many others (see [] and the references therein). Consequently,
many researchers, following the Banach contraction principle, investigated the existence
of weaker contractive conditions or extended previous results under relatively weak hy-
potheses on the metric space. On the other hand, Samet et al. [] introduced the con-
cepts of α-ψ-contractive and α-admissible mappings and established various fixed point
theorems for such mappings defined on complete metric spaces. Afterwards Salimi et al.
[] and Hussain et al. [, ] modified the notions of α-ψ-contractive and α-admissible
mappings and established certain fixed point theorems (see also [–]). In this paper,
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we introduce certain new classes of contraction mappings and establish fixed point the-
orems for such kind of mappings in non-Archimedean fuzzy metric spaces. The results
presented in this paper generalize and extend some recent results in non-Archimedean
fuzzy metric spaces. Some examples are given to support the usability of our results. For
the sake of completeness, we now briefly recall some basic concepts.

Definition . A binary operation � : [, ] × [, ] → [, ] is called a continuous t-norm
if it satisfies the following assertions:

(TN) � is commutative and associative;
(TN) � is continuous;
(TN) a �  = a for all a ∈ [, ];
(TN) a � b ≤ c � d when a ≤ c and b ≤ d and a, b, c, d ∈ [, ].

Definition . (George and Veeramani []) A fuzzy metric space is an ordered triple
(X, M,�) such that X is a nonempty set, � is a continuous t-norm and M is a fuzzy set on
X × X × (, +∞) satisfying the following conditions, for all x, y, z ∈ X and t, s > :

(FM) M(x, y, t) >  for all t > ;
(FM) M(x, y, t) =  if and only if x = y;
(FM) M(x, y, t) = M(y, x, t);
(FM) M(x, y, t) � M(y, z, s) ≤ M(x, z, t + s);
(FM) M(x, y, ·) : (, +∞) → (, ] is left continuous.

Then the triple (X, M,�) is called a fuzzy metric space. If we replace (FM) by
(FM) M(x, y, t) � M(y, z, s) ≤ M(x, z, max{t, s}),

then the triple (X, M,�) is called a non-Archimedean fuzzy metric space. Since (FM)
implies (FM), then each non-Archimedean fuzzy metric space is a fuzzy metric space.

Definition . Let (X, M,�) be a fuzzy metric space (or non-Archimedean fuzzy metric
space). Then

(i) a sequence {xn} converges to x ∈ X if and only if limn→+∞ M(xn, x, t) =  for all t > ;
(ii) a sequence {xn} in X is a Cauchy sequence if and only if for all ε ∈ (, ) and t > ,

there exists n such that M(xn, xm, t) >  – ε for all m, n ≥ n;
(iii) the fuzzy metric space (or the non-Archimedean fuzzy metric space) is called

complete if every Cauchy sequence converges to some x ∈ X .

If (X, M,�) is a fuzzy metric space and (X,�) is partially ordered, then (X, M,�) is called
a partially ordered fuzzy metric space. Then x, y ∈ X are called comparable if x � y or
y � x holds. Let f : X → X be a mapping, f is said to be non-decreasing if fx � fy whenever
x, y ∈ X and x � y.

Definition . [] Let (X, M,∗) be a triangular fuzzy metric space. The fuzzy metric M is
called triangular whenever


M(x, y, t)

–  ≤ 
M(x, z, t)

–  +


M(z, y, t)
– .

Definition . [] Let f : X → X and α : X × X → [, +∞). f is an α-admissible mapping
if

α(x, y) ≥  implies α(fx, fy) ≥ , x, y ∈ X.
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Definition . [] Let (X, M,∗) be a fuzzy metric space, T : X → X and α : X × X ×
(,∞) → [,∞). We say that T is an α-admissible mapping if

x, y ∈ X, α(x, y, t) ≥ t 	⇒ α(Tx, Ty, t) ≥ t

for all t > .

2 Fixed point results in triangular fuzzy metric spaces
Let (X, M,∗) be a fuzzy metric space, f : X → X be a self-mapping on X. We define
Pf (x, y, t), Qf (x, y, t) and Rf (x, y, t) as follows:

Pf (x, y, t) = max

{


M(x, y, t)
,


M(x, fx, t)

,


M(y, fy, t)
,




[


M(x, fy, t)
+


M(y, fx, t)

– 
]}

,

Qf (x, y, t) = max
{

M(x, fx, t), M(y, fy, t), M(x, fy, t), M(y, fx, t)
}

and

Rf (x, y, t) = min

{
 –


M(x, fx, t)

,  –


M(y, fy, t)
,  –


M(x, fy, t)

,  –


M(y, fx, t)

}
.

We now state and prove our first result of this section.

Theorem . Let (X, M,∗) be a complete triangular fuzzy metric space and f be a self-
mapping on X. Also suppose that α : X × X × [,∞) → [,∞) is a mapping. Assume that
the following assertions hold:

(i) there exists x ∈ X such that α(x, fx, t) ≥ t for all t > ;
(ii) f is an α-admissible mapping;

(iii) if {xn} is a sequence in X such that α(xn, xn+, t) ≥ t for all n ∈N and all t >  with
xn → x as n → ∞, then α(xn, x, t) ≥ t for all n ∈N∪ {};

(iv) for all x, y ∈ X and all t >  with 
+λ

( 
M(x,fx,t) – ) ≤ 

M(x,y,t) – , we have

α(x, y, t)
tM(fx, fy, t)

≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ

∣∣ + LRf (x, y, t), (.)

where λ ∈ (, ) and L ≥ .
Then f has a fixed point.

Proof Let x ∈ X be such that α(x, fx, t) ≥ t for all t > . Define a sequence {xn} in X by
xn = f nx = fxn– for all n ∈ N. If xn+ = xn for some n ∈ N, then x = xn is a fixed point for
f and the result is proved. Hence, we suppose that xn+ �= xn for all n ∈ N. Since f is an
α-admissible mapping and α(x, fx, t) ≥ t, we deduce that α(x, x, t) = α(fx, f x, t) ≥ t.
Continuing this process, we get

α(xn, xn+, t) ≥ t (.)

for all n ∈N∪ {} and all t > . Now since


 + λ

(


M(xn–, fxn–, t)
– 

)
≤ 

M(xn–, fxn–, t)
–  =


M(xn–, xn, t)

– ,
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then from (iv) with x = xn– and y = xn we get


M(xn, xn+, t)

≤ α(xn, xn+, t)
tM(xn, xn+, t)

=
α(xn, xn+, t)

tM(fxn–, fxn, t)

≤ λPf (xn–, xn, t) +
∣∣Qf (xn–, xn, t) – λ

∣∣ + LRf (xn–, xn, t).

That is,


M(xn, xn+, t)

≤ λPf (xn–, xn, t) +
∣∣Qf (xn–, xn, t) – λ

∣∣ + LRf (xn–, xn, t) (.)

for all t >  and all n ∈N, where

Pf (xn–, xn, t) = max

{


M(xn–, xn, t)
,


M(xn–, fxn–, t)

,


M(xn, fxn, t)

,



[


M(xn–, fxn, t)
+


M(xn, fxn–, t)

– 
]}

= max

{


M(xn–, xn, t)
,


M(xn, xn+, t)

,


M(xn–, xn+, t)

}

≤ max

{


M(xn–, xn, t)
,


M(xn, xn+, t)

,




[


M(xn–, xn, t)
–  +


M(xn, xn+, t)

– 
]

+



}

≤ max

{


M(xn–, xn, t)
,


M(xn, xn+, t)

,




[


M(xn–, xn, t)
+


M(xn, xn+, t)

]
–




}

= max

{


M(xn–, xn, t)
,


M(xn, xn+, t)

}
≤ Pf (xn–, xn, t),

which implies

Pf (xn–, xn, t) = max

{


M(xn–, xn, t)
,


M(xn, xn+, t)

}
(.)

and

Qf (xn–, xn, t) = max
{

M(xn–, fxn–, t), M(xn, fxn, t), M(xn–, fxn, t), M(xn, fxn–, t)
}

= max
{

M(xn–, xn, t), M(xn, xn+, t), M(xn–, xn+, t), M(xn, xn, t)
}

= . (.)

Also,

Rf (xn–, xn, t) = min

{
 –


M(xn–, fxn–, t)

,  –


M(xn, fxn, t)
,

 –


M(xn–, fxn, t)
,  –


M(xn, fxn–, t)

}
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= min

{
 –


M(xn–, xn, t)

,  –


M(xn, xn+, t)
,

 –


M(xn–, xn+, t)
,  –


M(xn, xn, t)

}
= . (.)

From (.), (.), (.) and (.) we obtain


M(xn, xn+, t)

≤ λPf (xn–, xn, t) + | – λ|

= λPf (xn–, xn, t) +  – λ

= λ
(
Pf (xn–, xn, t) – 

)
+ ,

which implies


M(xn, xn+, t)

–  ≤ λ
(
Pf (xn–, xn, t) – 

)
.

Now if Pf (xn–, xn, t) = 
M(xn ,xn+,t) , then we get


M(xn, xn+, t)

–  ≤ λ

[


M(xn, xn+, t)
– 

]

<


M(xn, xn+, t)
– ,

which is a contradiction. Hence,


M(xn, xn+, t)

–  ≤ λ

[


M(xn–, xn, t)
– 

]
(.)

for all n ∈N and all t > . This implies


M(xn, xn+, t)

–  ≤ λn
[


M(x, x, t)

– 
]

. (.)

Thus, for all n > m, we have


M(xn, xm, t)

–  ≤ 
M(xn, xn–, t)

–  + · · · +


M(xm+, xm, t)
– 

≤ (
λn– + λn– + · · · + λm)( 

M(x, x, t)
– 

)

≤ λm

 – λ

(


M(x, x, t)
– 

)
. (.)

That is, {xn} is a Cauchy sequence. Since, X is a complete fuzzy metric space, then there
exists x∗ ∈ X such that xn → x∗ as n → ∞. By (iii), α(xn, x∗, t) ≥ t holds for all n ∈ N and
all t > . Suppose that there exists n ∈N such that


 + λ

(


M(xn , fxn , t)
– 

)
>


M(xn , x∗, t)

– 
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and


 + λ

(


M(xn–, fxn–, t)
– 

)
>


M(xn–, x∗, t)

– .

By (.) we deduce


M(xn–, fxn–, t)

–  =


M(xn–, xn , t)
– 

≤ 
M(xn–, x, t)

–  +


M(xn , x, t)
– 

<


 + λ

(


M(xn–, fxn–, t)
– 

)

+


 + λ

(


M(xn , fxn , t)
– 

)

≤ 
 + λ

(


M(xn–, fxn–, t)
– 

)

+
λ

 + λ

(


M(xn–, fxn–, t)
– 

)

=


M(xn–, fxn–, t)
– ,

which is a contradiction. Hence, either


 + r

(


M(xn, fxn, t)
– 

)
≤ 

M(xn, x∗, t)
– 

or


 + r

(


M(xn–, fxn–, t)
– 

)
≤ 

M(xn–, x∗, t)
– 

holds for all n ∈N. Let


 + r

(


M(xn, fxn, t)
– 

)
≤ 

M(xn, x∗, t)
– .

Then from (iv) we have


M(xn, fx∗, t)

≤ α(xn, x∗, t)
tM(xn+, fx∗, t)

=
α(xn, x∗, t)

tM(fxn, fx∗, t)

≤ λPf (xn, x∗, t
)

+
∣∣Qf (xn, x∗, t

)
– λ

∣∣ (.)

for all t > , where

Pf (xn, x∗, t
)

= max

{


M(xn, x∗, t)
,


M(xn, fxn, t)

,


M(x∗, fx∗, t)
,




[


M(xn, fx∗, t)
+


M(x∗, fxn, t)

– 
]}
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= max

{


M(xn, x∗, t)
,


M(xn, xn+, t)

,


M(x∗, fx∗, t)
,




[


M(xn, fx∗, t)
+


M(x∗, xn+, t)

– 
]}

,

and so

lim
n→∞ Pf (xn, x∗, t

)
=


M(x∗, fx∗, t)

.

Also,

Qf (xn, x∗, t
)

= max
{

M(xn, xn+, t), M
(
x∗, fx∗, t

)
, M

(
xn, fx∗, t

)
, M

(
x∗, xn+, t

)}
,

and so

lim
n→∞ Qf (xn, x∗, t

)
= .

Similarly,

lim
n→∞ Rf (xn, x∗, t

)
= .

By taking limit as n → ∞ in (.) we get


M(x∗, fx∗, t)

–  ≤ λ

(


M(x∗, fx∗, t)
– 

)

for all t > . Now, assume that there exists t such that M(x∗, fx∗, t) < . Then by the above
inequality we have  ≤ λ, which is a contradiction. Hence, M(x∗, fx∗, t) =  for all t > ; i.e.,
x∗ = fx∗. Similarly we can deduce that x∗ is a fixed point of f when


 + r

(


M(xn–, fxn–, t)
– 

)
≤ 

M(xn–, x∗, t)
– . �

Example . Let X = R
. We define α : X × X × [,∞) → [,∞) by

α(x, y, t) =

{
t, x, y ∈ U = {(, ), (, ), (, ), (, ), (, )},
, otherwise.

Define M on X × X × (,∞) by M((x, x), (y, y), t) = 
+|x–y|+|x–y| and a � b = min{a, b}.

Clearly, (M, X,�) is a complete triangular fuzzy metric space. Also, define f : X → X and
ψ : [,∞) → [,∞) by

f (x, x) =

⎧⎪⎨
⎪⎩

(x, ) if x ≤ x and x, x ∈ U ,
(, x) if x > x and x, x ∈ U ,
(x

 , x
) if x, x ∈R

\U
and ψ(t) = .t.

First we assume


 + 



(


M(x, fx, t)
– 

)
=




(


M(x, fx, t)
– 

)
≤ 

M(x, y, t)
– 
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and α(x, y, t) ≥ t (or x, y ∈ U). Then

(x, y) ∈ {(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,

(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,

(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,

(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)}
.

Since M(fx, fy, t) = M(fy, fx, t), Pf (x, y, t) = Pf (y, x, t) and Qf (x, y, t) = Qf (y, x, t), hence with-
out any loss of generality we can reduce the above set to the following:

(x, y) ∈ {(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,

(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)
,
(
(, ), (, )

)}
.

Now, we consider the following cases:
• Let (x, y) = ((, ), (, )), then

Pf ((, ), (, ), t
)

= max

{


M((, ), (, ), t)
,


M((, ), f (, ), t)

,


M((, ), f (, ), t)
,




[


M((, ), f (, ), t)
+


M((, ), f (, ), t)

– 
]}

= max

{


M((, ), (, ), t)
,


M((, ), (, ), t)

,


M((, ), (, ), t)
,




[


M((, ), (, ), t)
+


M((, ), (, ), t)

– 
]}

= max

{
, , ,




[ +  – ]
}

= 

and

Qf ((, ), (, ), t
)

= max
{

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)
,

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)}
= max

{
M

(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)
,

M
(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)}

= max

{
,




, ,



}
= ,

and so

α((, ), (, ), t)
tM(f (, ), f (, ), t)

=  ≤ 


=



·  +
∣∣∣∣ –




∣∣∣∣
=




Pf ((, ), (, ), t
)

+
∣∣∣∣Qf ((, ), (, ), t

)
–




∣∣∣∣.
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• Let (x, y) = ((, ), (, )), then

Pf ((, ), (, ), t
)

= max

{


M((, ), (, ), t)
,


M((, ), f (, ), t)

,


M((, ), f (, ), t)
,




[


M((, ), f (, ), t)
+


M((, ), f (, ), t)

– 
]}

= max

{


M((, ), (, ), t)
,


M((, ), (, ), t)

,


M((, ), (, ), t)
,




[


M((, ), (, ), t)
+


M((, ), (, ), t)

– 
]}

= max

{
, , ,




[ +  – ]
}

= 

and

Qf ((, ), (, ), t
)

= max
{

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)
,

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)}
= max

{
M

(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)
,

M
(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)}

= max

{
,




, ,



}
= ,

and so

α((, ), (, ), t)
tM(f (, ), f (, ), t)

=  ≤ 


=



·  +
∣∣∣∣ –




∣∣∣∣
=




Pf ((, ), (, ), t
)

+
∣∣∣∣Qf ((, ), (, ), t

)
–




∣∣∣∣.

• Let (x, y) = ((, ), (, )), then

Pf ((, ), (, ), t
)

= max

{


M((, ), (, ), t)
,


M((, ), f (, ), t)

,


M((, ), f (, ), t)
,




[


M((, ), f (, ), t)
+


M((, ), f (, ), t)

– 
]}

= max

{


M((, ), (, ), t)
,


M((, ), (, ), t)

,


M((, ), (, ), t)
,




[


M((, ), (, ), t)
+


M((, ), (, ), t)

– 
]}

= max

{
, , ,




[ +  – ]
}

= 

and

Qf ((, ), (, ), t
)

= max
{

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)
M

(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)}
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= max
{

M
(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)
,

M
(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)}

= max

{
,




,



,




}
= ,

and so

α((, ), (, ), t)
tM(f (, ), f (, ), t)

=  ≤ 


=



·  +
∣∣∣∣ –




∣∣∣∣
=




Pf ((, ), (, ), t
)

+
∣∣∣∣Qf ((, ), (, ), t

)
–




∣∣∣∣.

• Let (x, y) = ((, ), (, )), then

Pf ((, ), (, ), t
)

= max

{


M((, ), (, ), t)
,


M((, ), f (, ), t)

,


M((, ), f (, ), t)
,




[


M((, ), f (, ), t)
+


M((, ), f (, ), t)

– 
]}

= max

{


M((, ), (, ), t)
,


M((, ), (, ), t)

,


M((, ), (, ), t)
,




[


M((, ), (, ), t)
+


M((, ), (, ), t)

– 
]}

= max

{
, , ,




[ +  – ]
}

= 

and

Qf ((, ), (, ), t
)

= max
{

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)
,

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)}
= max

{
M

(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)
,

M
(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)}

= max

{
,




,



,




}
= ,

and so

α((, ), (, ), t)
tM(f (, ), f (, ), t)

=  ≤ 


=



·  +
∣∣∣∣ –




∣∣∣∣
=




Pf ((, ), (, ), t
)

+
∣∣∣∣Qf ((, ), (, ), t

)
–




∣∣∣∣.

• Let (x, y) = ((, ), (, )), then

Pf ((, ), (, ), t
)

= max

{


M((, ), (, ), t)
,


M((, ), f (, ), t)

,


M((, ), f (, ), t)
,




[


M((, ), f (, ), t)
+


M((, ), f (, ), t)

– 
]}
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= max

{


M((, ), (, ), t)
,


M((, ), (, ), t)

,


M((, ), (, ), t)
,




[


M((, ), (, ), t)
+


M((, ), (, ), t)

– 
]}

= max

{
, , ,




[ +  – ]
}

= 

and

Qf ((, ), (, ), t
)

= max
{

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)
,

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)}
= max

{
M

(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)
,

M
(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)}

= max

{



,



,



,



}
=




,

and so

α((, ), (, ), t)
tM(f (, ), f (, ), t)

=  ≤ 


=



·  +
∣∣∣∣ 


–



∣∣∣∣
=




Pf ((, ), (, ), t
)

+
∣∣∣∣QT(

(, ), (, ), t
)

–



∣∣∣∣.

• Let (x, y) = ((, ), (, )), then

Pf ((, ), (, ), t
)

= max

{


M((, ), (, ), t)
,


M((, ), f (, ), t)

,


M((, ), f (, ), t)
,




[


M((, ), f (, ), t)
+


M((, ), f (, ), t)

– 
]}

= max

{


M((, ), (, ), t)
,


M((, ), (, ), t)

,


M((, ), (, ), t)
,




[


M((, ), (, ), t)
+


M((, ), (, ), t)

– 
]}

= max

{
, , ,




[ +  – ]
}

= 

and

Qf ((, ), (, ), t
)

= max
{

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)
,

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)}
= max

{
M

(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)
,

M
(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)}

= max

{



,



,



,




}
=




,
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and so

α((, ), (, ), t)
tM(f (, ), f (, ), t)

=  ≤ 


=



·  +
∣∣∣∣ 


–



∣∣∣∣
=




Pf ((, ), (, ), t
)

+
∣∣∣∣Qf ((, ), (, ), t

)
–




∣∣∣∣.

• Let (x, y) = ((, ), (, )), then

Pf ((, ), (, ), t
)

= max

{


M((, ), (, ), t)
,


M((, ), f (, ), t)

,


M((, ), f (, ), t)
,




[


M((, ), f (, ), t)
+


M((, ), f (, ), t)

– 
]}

= max

{


M((, ), (, ), t)
,


M((, ), (, ), t)

,


M((, ), (, ), t)
,




[


M((, ), (, ), t)
+


M((, ), f (, ), t)

– 
]}

= max

{
, , ,




[ +  – ]
}

= 

and

Qf ((, ), (, ), t
)

= max
{

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)
,

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)}
= max

{
M

(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)
,

M
(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)}

= max

{



,



, ,




}
= ,

and so

α((, ), (, ), t)
tM(f (, ), f (, ), t)

=  ≤ 


=



·  +
∣∣∣∣ 


–



∣∣∣∣
=




Pf ((, ), (, ), t
)

+
∣∣∣∣Qf ((, ), (, ), t

)
–




∣∣∣∣.

• Let (x, y) = ((, ), (, )), then

Pf ((, ), (, ), t
)

= max

{


M((, ), (, ), t)
,


M((, ), f (, ), t)

,


M((, ), f (, ), t)
,




[


M((, ), f (, ), t)
+


M((, ), f (, ), t)

– 
]}

= max

{


M((, ), (, ), t)
,


M((, ), (, ), t)

,


M((, ), (, ), t)
,




[


M((, ), (, ), t)
+


M((, ), (, ), t)

– 
]}

= max

{
, , ,




[ +  – ]
}

= 
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and

Qf ((, ), (, ), t
)

= max
{

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)
,

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)}
= max

{
M

(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)
,

M
(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)}

= max

{



,



, ,




}
= ,

and so

α((, ), (, ), t)
tM(f (, ), f (, ), t)

=  ≤ 


=



·  +
∣∣∣∣ –




∣∣∣∣
=




Pf ((, ), (, ), t
)

+
∣∣∣∣Qf ((, ), (, ), t

)
–




∣∣∣∣.

• Let (x, y) = ((, ), (, )), then

Pf ((, ), (, ), t
)

= max

{


M((, ), (, ), t)
,


M((, ), f (, ), t)

,


M((, ), f (, ), t)
,




[


M((, ), f (, ), t)
+


M((, ), f (, ), t)

– 
]}

= max

{


M((, ), (, ), t)
,


M((, ), (, ), t)

,


M((, ), (, ), t)
,




[


M((, ), (, ), t)
+


M((, ), (, ), t)

– 
]}

= max

{
, , ,




[ +  – ]
}

= 

and

Qf ((, ), (, ), t
)

= max
{

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)
,

M
(
(, ), f (, ), t

)
, M

(
(, ), f (, ), t

)}
= max

{
M

(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)
,

M
(
(, ), (, ), t

)
, M

(
(, ), (, ), t

)}

= max

{



,



,



,




}
=




,

and so

α((, ), (, ), t)
tM(f (, ), f (, ), t)

=  ≤ 


=



·  +
∣∣∣∣ 


–



∣∣∣∣
=




Pf ((, ), (, ), t
)

+
∣∣∣∣Qf ((, ), (, ), t

)
–




∣∣∣∣.
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Otherwise, α(x, y, t) = , and so

α(x, y, t)
tM(fx, fy, t)

=  ≤ 


Pf (x, y, t) +
∣∣∣∣Qf (x, y, t) –




∣∣∣∣.

That is,


 + 



(


M(x, fx, t)
– 

)
≤ 

M(x, y, t)
– 

implies

α(x, y, t)
tM(fx, fy, t)

≤ 


Pf (x, y, t) +
∣∣∣∣Qf (x, y, t) –




∣∣∣∣
≤ 


Pf (x, y, t) +

∣∣∣∣Qf (x, y, t) –



∣∣∣∣ + LRf (x, y, t),

where L ≥ . Let α(x, y, t) ≥ t, then x, y ∈ U . On the other hand, fw ∈ U for all w ∈ U . Then
α(fx, fy, t) ≥ t. That is, f is an α-admissible mapping. If {xn} is a sequence in X such that
α(xn, xn+, t) ≥ t with xn → x as n → ∞, then xn ∈ U for all n ∈ N. Also, U is a closed set,
so x ∈ U . That is, α(xn, x, t) ≥ t for all n ∈N∪ {}. Clearly, α((, ), f (, ), t) ≥ t.

Therefore all conditions of Theorem . hold and f has a fixed point. Here, x = (, ) is
a fixed point of f .

Corollary . Let (X, M,∗) be a complete triangular fuzzy metric space and f be a self-
mapping on X. Also suppose that α : X × X × [,∞) → [,∞) is a mapping. Assume that
the following assertions hold:

(i) there exists x ∈ X such that α(x, fx, t) ≥ t for all t > ;
(ii) f is an α-admissible mapping;

(iii) if {xn} is a sequence in X such that α(xn, xn+, t) ≥ t for all n ∈N and all t >  with
xn → x as n → ∞, then α(x, xn, t) ≥ t for all n ∈N∪ {};

(iv) for all x, y ∈ X and all t > , we have

α(x, y, t)
tM(fx, fy, t)

≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ

∣∣ + LRf (x, y, t)

holds where λ ∈ (, ) and L ≥ .
Then f has a fixed point.

By taking L =  in Corollary ., we obtain the following corollary.

Corollary . Let (X, M,∗) be a complete triangular fuzzy metric space and f be a self-
mapping on X. Also suppose that α : X × X × [,∞) → [,∞) is a mapping. Assume that
the following assertions hold:

(i) there exists x ∈ X such that α(x, fx, t) ≥ t for all t > ;
(ii) f is an α-admissible mapping;

(iii) if {xn} is a sequence in X such that α(xn, xn+, t) ≥ t for all n ∈N and all t >  with
xn → x as n → ∞, then α(x, xn, t) ≥ t for all n ∈N∪ {};
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(iv) for all x, y ∈ X and all t > , we have

α(x, y, t)
tM(fx, fy, t)

≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ

∣∣

holds where λ ∈ (, ).
Then f has a fixed point.

By taking α(x, y, t) = t for all x, y ∈ X and all t >  in Corollary ., we obtain the following
result.

Corollary . Let (X, M,∗) be a complete triangular fuzzy metric space and f be a self-
mapping on X. Assume that for all x, y ∈ X and all t > ,


M(Tx, Ty, t)

≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ

∣∣ + LRf (x, y, t)

holds where λ ∈ (, ) and L ≥ . Then f has a fixed point.

By taking L =  in Corollary ., we obtain the following corollary.

Corollary . Let (X, M,∗) be a complete triangular fuzzy metric space and f be a self-
mapping on X. Assume that for all x, y ∈ X and all t > ,


M(fx, fy, t)

≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ

∣∣

holds where λ ∈ (, ). Then f has a fixed point.

Theorem . Let (X, M,∗,�) be a complete triangular partially ordered fuzzy metric
space and f be a self-mapping on X. Assume that the following assertions hold:

(i) there exists x ∈ X such that x � fx;
(ii) f is an increasing mapping;

(iii) if {xn} is an increasing sequence in X such that with xn → x as n → ∞, then x � xn

for all n ∈N∪ {};
(iv) for all x, y ∈ X and all t >  with 

+λ
( 

M(x,fx,t) – ) ≤ 
M(x,y,t) –  and x � y, we have


M(fx, fy, t)

≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ(t)

∣∣ + LRf (x, y, t),

where λ ∈ (, ) and L ≥ .
Then f has a fixed point.

Proof Define α : X × X × (,∞) → [, +∞) by α(x, y, t) =
{ t, if x � y,

, otherwise. At first we prove
that f is an α-admissible mapping. Let α(x, y, t) ≥ t, then x � y. Now, since f is increasing,
then we have fx � fy. That is, α(fx, fy, t) ≥ t. Therefore f is an α-admissible mapping. From
(i) there exists x ∈ X such that x � fx. That is, α(x, fx, t) ≥ t for all t > . If {xn} is a
sequence in X such that α(xn, xn+, t) ≥ t for all n ∈N and all t >  with xn → x as n → ∞,
then xn � xn+ for all n ∈ N with xn → x as n → ∞. Hence from (iii) we get xn � x for all
n ∈N∪ {}. That is, α(xn, x, t) ≥ t for all n ∈N∪ {}.
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Let 
+λ

( 
M(x,fx,t) – ) ≤ 

M(x,y,t) –  and x � y (or α(x, y, t) = t), then from (iv) we have


M(fx, fy, t)

≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ(t)

∣∣ + LRf (x, y, t). (.)

Also if α(x, y, t) = , then

α(x, y, t)
tM(fx, fy, t)

=  ≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ(t)

∣∣ + LRf (x, y, t). (.)

That is, for all x, y ∈ X and all t >  with 
+λ

( 
M(x,fx,t) – ) ≤ 

M(x,y,t) – , we have

α(x, y, t)
tM(fx, fy, t)

≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ(t)

∣∣ + LRf (x, y, t). (.)

Hence, all conditions of Theorem . are satisfied and f has a fixed point. �

Corollary . Let (X, M,∗,�) be a complete triangular partially ordered fuzzy metric
space and f be a self-mapping on X. Assume that the following assertions hold:

(i) there exists x ∈ X such that x � fx;
(ii) f is an increasing mapping;

(iii) if {xn} is an increasing sequence in X such that with xn → x as n → ∞, then x � xn

for all n ∈N∪ {};
(iv) for all x, y ∈ X and all t >  with x � y, we have


M(fx, fy, t)

≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ

∣∣ + LRf (x, y, t),

where λ ∈ (, ) and L ≥ .
Then f has a fixed point.

Corollary . Let (X, M,∗,�) be a complete triangular partially ordered fuzzy metric
space and f be a self-mapping on X. Assume that the following assertions hold:

(i) there exists x ∈ X such that x � fx;
(ii) f is an increasing mapping;

(iii) if {xn} is an increasing sequence in X such that with xn → x as n → ∞, then x � xn

for all n ∈N∪ {};
(iv) for all x, y ∈ X and all t >  with x � y, we have


M(fx, fy, t)

≤ λPf (x, y, t) +
∣∣Qf (x, y, t) – λ

∣∣,

where λ ∈ (, ).
Then f has a fixed point.

3 Some results in non-Archimedean fuzzy metric spaces
In this section we state and prove certain fixed point results in the setting of non-
Archimedean fuzzy metric space to generalize the work of Miheţ [].
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Theorem . Let (X, M,�,�) be a partially ordered complete non-Archimedean fuzzy
metric space and f be an α-admissible and non-increasing mapping. Also suppose that
the following assertions hold:

(i) there exists x ∈ X such that α(x, fx, t) ≥ t for all t >  and x � fx;
(ii) if {xn} is an increasing sequence such that α(xn, xn+, t) ≥ t for all n ∈N and all t > 

with xn → x as n → +∞, then xn � x for all n ∈N where α(x, fx, t) ≥ t;
(iii) for all comparable x, y ∈ X and all t > , we have

[
α(x, fx, t)α(y, fy, t) + 

]ψ(M(fx,fy,t))
[

t +
α(x, fx, t) + α(y, fy, t)

t

]φ(M(x,y,t))

≤ [
t + 

]ψ(M(x,y,t)),

where ψ ,φ : [, ] → [, ] are two continuous functions such that ψ is decreasing,
ψ(t) =  iff t =  and φ(t) >  for all t ∈ (, ).

Then f has a fixed point.

Proof Let x � fx. If x = fx, then the result is proved. Hence we suppose that x ≺ fx.
Define a sequence {xn} by xn = f nx = fxn– for all n ∈ N. Since f is non-decreasing and
x ≺ fx, then

x ≺ x � x � · · · , (.)

and hence {xn} is a non-decreasing sequence. If xn = xn+ = fxn for some n ∈ N, then the
result is proved as xn is a fixed point of f . In what follows we suppose that  < M(xn, xn+,
t) < . Since f is an α-admissible mapping and

α(x, fx, t) = α(x, x, t) ≥ t,

we deduce that

α(x, x, t) = α(fx, fx, t) ≥ t.

Continuing this process, we get α(xn, xn+, t) ≥ t for all n ∈N∪ {} and all t > . From (iii)
with x = xn– and y = xn, we obtain

[
t + 

]ψ(M(xn ,xn+,t))+φ(M(xn–,xn ,t))

=
[
t + 

]ψ(M(xn ,xn+,t))
[

t +
t + t
t

]φ(M(xn–,xn ,t))

≤ [
α(xn–, xn, t)α(xn, xn+, t) + 

]ψ(M(fxn–,fxn ,t))

×
[

t +
α(xn–, xn, t) + α(xn, xn+, t)

t

]φ(M(xn–,xn ,t))

≤ [
t + 

]ψ(M(xn–,xn ,t)),

and so

ψ
(
M(xn, xn+, t)

) ≤ ψ
(
M(xn–, xn, t)

)
– φ

(
M(xn–, xn, t)

) ≤ ψ
(
M(xn–, xn, t)

)
. (.)
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Since ψ is decreasing, so M(xn–, xn, t) ≤ M(xn, xn+, t). Hence, {M(xn, xn+, t)} is an increas-
ing sequence in (, ]. Then there exists l(t) ∈ (, ] such that

lim
n→+∞ M(xn, xn+, t) = l(t)

for all t > . Let us prove that l(t) =  for all t > . Suppose that there exists t >  such that
 < l(t) < . By taking the limit as n → +∞ in (.), we have

ψ
(
l(t)

) ≤ ψ
(
l(t)

)
– φ

(
l(t)

)
.

Then φ(l(t)) = , which is a contradiction, and so l(t) =  for all t > . Now, we want to
show that {xn} is a Cauchy sequence. Assume that it is not true. Then there exist ε ∈ (, )
and t >  such that for all k ∈N there exist n(k), m(k) ∈N with m(k) > n(k) ≥ k and

M(xm(k), xn(k), t) ≤  – ε. (.)

Assume that m(k) is the least integer exceeding n(k) satisfying the above inequality. Equiv-
alently,

M(xm(k)–, xn(k), t) >  – ε, (.)

and so for all k we get

 – ε ≥ M(xm(k), xn(k), t)

≥ M(xm(k)–, xm(k), t) � M(xm(k)–, xn(k), t)

> τm(k)(t) � ( – ε). (.)

By taking limit as n → +∞ in (.), we deduce that

lim
n→+∞ M(xm(k), xn(k), t) =  – ε

for t > .
From

M(xm(k)+, xn(k)+, t) ≥ M(xm(k)+, xm(k), t) � M(xm(k), xn(k), t)

� M(xn(k), xn(k)+, t)

and

M(xm(k), xn(k), t) ≥ M(xm(k)+, xm(k), t) � M(xm(k)+, xn(k)+, t)

� M(xn(k), xn(k)+, t),

we get

lim
n→+∞ M(xm(k)+, xn(k)+, t) =  – ε.
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From (iii) with x = xm(k) and y = xn(k), we deduce

[
t
 + 

]ψ(M(xm(k)+,xn(k)+,t))+φ(M(xm(k),xn(k),t))

=
[
t
 + 

]ψ(M(fxm(k),fxn(k),t))
[

t
 +

t + t

t

]φ(M(xm(k),xn(k),t))

≤ [
α(xm(k), fxm(k), t)α(xn(k), fxn(k), t) + 

]ψ(M(fxm(k),fxn(k),t))

×
[

t
 +

α(xm(k), fxm(k), t) + α(xn(k), fxn(k), t)
t

]φ(M(xm(k),xn(k),t))

≤ [
t
 + 

]ψ(M(xm(k),xn(k),t)),

which implies

ψ
(
M(xm(k)+, xn(k)+, t)

) ≤ ψ
(
M(xm(k), xn(k), t)

)
– φ

(
M(xm(k), xn(k), t)

)
.

Applying the continuity of the functions φ and ψ , by taking the limit as k → +∞ in the
above inequality, we get

ψ( – ε) ≤ ψ( – ε) – φ( – ε),

and so φ( – ε) = , which is a contradiction. Then {xn} is a Cauchy sequence. Since
(X, M,�) is a complete non-Archimedean fuzzy metric space, then the sequence {xn} con-
verges to some z ∈ X, that is, for all t > ,

lim
n→+∞ M(xn, z, t) = .

Assume that there exists t >  such that  < M(z, fz, t) < . Then by (.) and (ii) we
get

[
t
 + 

]ψ(M(xn+,fz,t))+φ(M(xn ,z,t))

=
[
t
 + 

]ψ(M(fxn ,fz,t))
[

t
 +

t + t

t

]φ(M(xn ,z,t))

≤ [
α(xn, fxn, t)α(z, fz, t) + 

]ψ(M(fxn ,fz,t))
[

t
 +

α(xn, fxn, t) + α(z, fz, t)
t

]φ(M(xn ,z,t))

≤ [
t
 + 

]ψ(M(xn ,z,t)),

and hence

ψ
(
M(xn+, fz, t)

) ≤ ψ
(
M(xn, z, t)

)
– φ

(
M(xn, z, t)

)
.

By taking the limit as n → +∞ in the above inequality, we have

ψ
(
M(z, fz, t)

) ≤ ψ() – φ() ≤ ψ() = .

Then ψ(M(z, fz, t)) = , i.e., M(z, fz, t) = , which is a contradiction. Hence, M(z, fz, t) = 
for all t > , that is, z = fz. �



Hussain et al. Fixed Point Theory and Applications  (2015) 2015:134 Page 20 of 26

If in Theorem . we take α(x, y, t) = t for all x, y ∈ X and all t > , then we deduce the
following corollary.

Corollary . Let (X, M,�,�) be a partially ordered complete non-Archimedean fuzzy
metric space, ψ ,φ : [, ] → [, ] as in Theorem . and f : X → X be an increasing map-
ping such that

ψ
(
M(fx, fy, t)

) ≤ ψ
(
M(x, y, t)

)
– φ

(
M(x, y, t)

)

holds for all comparable x, y ∈ X. If the following assertions hold:
(i) there exists x ∈ X such that x � fx;

(ii) if {xn} is an increasing sequence such that xn → x as n → +∞, then xn � x for all
n ∈N.

Then f has a fixed point.

Theorem . Let (X, M,�,�) be a partially ordered complete non-Archimedean fuzzy
metric space and f be an α-admissible and non-increasing mapping such that the following
assertions hold:

(i) there exists x ∈ X such that α(x, fx, t) ≥ t for all t >  and x � fx;
(ii) if {xn} is an increasing sequence such that α(xn, xn+, t) ≥ t for all n ∈N∪ {}, all

t >  and xn → x as n → +∞, then xn � x for all n ∈N where α(x, fx, t) ≥ t;
(iii) assume that there exists a function β : [, ] → [, +∞) such that for any sequence

{tn} ⊆ [, ] of positive reals, β(tn) →  implies tn →  such that

[
t + 

]M(fx,fy,t)

≥
[

α(x, fx, t)α(y, fy, t)
t

][
α(x, fx, t)α(y, fy, t) + 

]β(M(x,y,t))M(x,y,t) (.)

holds for all comparable x, y ∈ X and all t > .
Then f has a fixed point.

Proof Let x � fx. If x = fx, then the result is proved. Hence we suppose that x ≺ fx.
Define a sequence {xn} by xn = f nx = fxn– for all n ∈ N. Since f is non-decreasing and
x ≺ fx, then

x ≺ x � x � · · · , (.)

and hence {xn} is a non-decreasing sequence. If xn = xn+ = fxn for some n ∈ N, then the
result is proved as xn is a fixed point of f . In what follows we suppose that  < M(xn, xn+,
t) < . Since f is an α-admissible mapping with respect to η and α(x, fx, t) = α(x, x, t) ≥
t, we deduce that α(x, x, t) = α(fx, fx, t) ≥ t. By continuing this process, we get α(xn,
xn+, t) ≥ t for all n ∈N∪ {} and all t > . From (.) we get

[
t + 

]M(fxn–,fxn ,t)

≥
[

α(xn–, fxn–, t)α(xn, fxn, t)
t

]
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× [
α(xn–, fxn–, t)α(xn, fxn, t) + 

]β(M(xn–,xn ,t))M(xn–,xn ,t)

≥
[

t · t
t

]
[t · t + ]β(M(xn–,xn ,t))M(xn–,xn ,t)

=
[
t + 

]β(M(xn–,xn ,t))M(xn–,xn ,t).

Thus

M(fxn–, fxn, t) ≥ β
(
M(xn–, xn, t)

)
M(xn–, xn, t).

Hence,

M(xn, xn+, t) ≥ β
(
M(xn–, xn, t)

)
M(xn–, xn, t) ≥ M(xn–, xn, t). (.)

That is, {Sn = M(xn, xn+, t)} is an increasing sequence in (, ]. Then there exists l(t) ∈ (, ]
such that limn→+∞ M(xn, xn+, t) = l(t) for all t > . We shall prove that l(t) =  for all t > .
By (.) we deduce

M(xn, xn+, t)
M(xn–, xn, t)

≥ β
(
M(xn–, xn, t)

) ≥ ,

which implies limn→+∞ β(M(xn–, xn, t)) = . Regarding the property of the function β , we
conclude that

lim
n→+∞ M(xn, xn+, t) = .

Next, we shall prove that {xn} is a Cauchy sequence. Suppose, to the contrary, that {xn} is
not a Cauchy sequence. Proceeding as in the proof of Theorem ., there exist ε ∈ (, )
and t >  such that for all k ∈N there exist n(k), m(k) ∈N with m(k) > n(k) ≥ k such that

lim
n→+∞ M(xm(k), xn(k), t) =  – ε

and

lim
n→+∞ M(xm(k)+, xn(k)+, t) =  – ε.

From (.) with x = xm(k) and y = xn(k) we deduce

[
t + 

]M(fxm(k),fxn(k),t)

≥
[

α(xm(k), fxm(k), t)α(xn(k), fxn(k), t)
t

]

× [
α(xm(k), fxm(k), t)α(xn(k), fxn(k), t) + 

]β(M(xm(k),xn(k),t))M(xm(k),xn(k),t)

≥
[

t · t
t

][
t + 

]β(M(xm(k),xn(k),t))M(xm(k),xn(k),t)

=
[
t + 

]β(M(xm(k),xn(k),t))M(xm(k),xn(k),t),
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which implies

M(fxm(k), fxn(k), t) ≥ β
(
M(xm(k), xn(k), t)

)
M(xm(k), xn(k), t),

and so

M(xm(k)+, xn(k)+, t)
M(xm(k), xm(k), t)

≥ β
(
M(xm(k), xm(k), t)

) ≥ .

Taking the limit as k → +∞ in the above inequality, we get

lim
k→+∞

β
(
M(xm(k), xn(k), t)

)
= ,

which implies

 – ε = lim
k→+∞

M(xm(k), xn(k), t) = ,

and so ε = , which is a contradiction. Then {xn} is a Cauchy sequence. Since (X, M,�) is a
complete space, then the sequence {xn} converges to some z ∈ X such that for all t > ,

lim
n→+∞ M(xn, z, t) = .

By (.) and (ii) we get

[
t + 

]M(fxn ,fz,t) ≥
[

α(xn, fxn, t)α(z, fz, t)
t

][
α(xn, fxn, t)α(z, fz, t) + 

]β(M(xn ,z,t))M(xn,z,t)

≥
[

t · t
t

][
t + 

]M(xn ,z,t)

=
[
t + 

]M(xn ,z,t),

and hence

M(fxn, fz, t) ≥ M(xn, z, t).

Taking the limit as n → +∞ in the above inequality, we have limn→+∞ M(fxn, fz, t) =  for
all t >  and then

M(z, fz, t) ≥ lim
n→+∞ M(fxn, z, t) � lim

n→∞ M(fxn, fz, t) =  �  = ,

that is, z = fz. �

Example . Let (X, M,�) be the non-Archimedean fuzzy metric space where M(x, y, t) =
min{x,y}
max{x,y} for all t >  and a � b = min{a, b}. Define f : X → X with

fx =

{

 x if x ∈ [, ],
ln(x – ) +  if x ∈ (, +∞).

Also define α(x, y, t) =
{ t, if x, y ∈ [, ],

, otherwise and β(t) = . Also, x � y iff x ≤ y.
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Let, x, y ∈ [, ] and x ≤ y. Then

[
t + 

]M(fx,fy,t) = ( x
y ) ≥ ( x

y )

=
[

α(x, fx, t)α(y, fy, t)
t

][
α(x, fx, t)α(y, fy, t) + 

]β(M(x,y,t))M(x,y,t).

Otherwise, α(x, fx, t)α(y, fy, t) = , and so

[
t + 

]M(fx,fy,t) ≥  =
[

α(x, fx, t)α(y, fy, t)
t

][
α(x, fx, t)α(y, fy, t) + 

]β(M(x,y,t))M(x,y,t).

Clearly, α(, f , t) ≥ t and  ≤ f . Now, if {xn} is an increasing sequence in X such that
α(xn, xn+, t) ≥  for all n ∈ N ∪ {} and xn → x as n → ∞, then {xn} ⊂ [, ] and hence
x ∈ [, ]. This implies that xn → x for all n ∈N and α(x, fx, t) ≥ t. Hence, all the conditions
of Theorem . hold and f has a fixed point. Then, by Theorem ., f has a fixed point.

If in Theorem . we take α(x, y, t) = t for all x, y ∈ X, then we deduce the following result.

Corollary . Let (X, M,�,�) be a complete non-Archimedean fuzzy metric space, and f
be an increasing mapping on X. Assume that there exists a function β : [, ] → [, +∞)
such that for any sequence {tn} ⊆ [, ] of positive reals, β(tn) →  implies tn →  and

M(fx, fy, t) ≥ β
(
M(x, y, t)

)
M(x, y, t)

for all comparable x, y ∈ X and all t > . Also suppose that the following assertions hold:
(i) there exists x ∈ X such that x � fx;

(ii) if {xn} is an increasing sequence such that xn → x as n → +∞, then xn � x for all
n ∈N.

Then f has a fixed point.

4 Application to integral equations
Fixed point theorems for monotone operators in ordered metric spaces are widely investi-
gated and have found various applications in differential and integral equations (see [–
] and the references therein). Let X = C([, T],R) be the set of real continuous functions
defined on [, T] and M : X × X × (, +∞) → [, ] be defined by

M(x, y, r) =
r

r + ‖x – y‖∞

for all x, y ∈ X and all r > . Also define a � b = min{a, b}. Then (M, X,�) is a complete
triangular fuzzy metric space.

Consider the integral equation

x(t) = p(t) +
∫ T


S(t, s)f

(
s, x(s)

)
ds (.)

and the mapping F : X → X defined by

Fx(t) = p(t) +
∫ T


S(t, s)f

(
s, x(s)

)
ds, (.)
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where
(A) f : [, T] ×R →R is continuous;
(B) p : [, T] →R is continuous;
(C) S : [, T] × [, T] → [, +∞) is continuous;
(D) there exist θ : X × X →R and λ ∈ (, ) such that if θ (x, y) ≥  for x, y ∈ X , then for

all s ∈ [, T] and all r >  we have

∣∣f (s, x(s)
)

– f
(
s, y(s)

)∣∣ ≤ λmax
{|x – y|, ∣∣x(s) – Fx(s)

∣∣, ∣∣y(s) – Fy(s)
∣∣}

+ r
∣∣QF (x, y, r) – λ

∣∣ + λr – r;

(F)

∫ T


S(t, s) ds ≤  for all t ∈ [, T];

(G) there exists x ∈ X such that θ (x, Fx) ≥ ;
(H)

θ (x, y) ≥  for some x ∈ X implies θ (Fx, Fy) ≥ ;

(I) if {xn} is a sequence in X such that θ (xn, xn+) ≥  for all n ∈N∪ {} and xn → x as
n → +∞, then θ (xn, x) ≥ .

Theorem . Under the assumptions (A)-(I), the integral equation (.) has a solution in
X = C([, T],R).

Proof Let F : X → X be defined by (.) and let x, y ∈ X be such that θ (x, y) ≥ . By the
condition (D), we deduce that

∣∣Fx(t) – Fy(t)
∣∣ =

∣∣∣∣
∫ T


S(t, s)

[
f
(
s, x(s)

)
– f

(
s, y(s)

)]
ds

∣∣∣∣
≤

∫ T


S(t, s)

∣∣f (s, x(s)
)

– f
(
s, y(s)

)∣∣ds

≤
∫ T


S(t, s)

[
λmax

{|x – y|, ∣∣x(s) – Fx(s)
∣∣, ∣∣y(s) – Fy(s)

∣∣}

+ r
∣∣QF (x, y, r) – λ

∣∣ + λr – r
]

ds

≤
∫ T


S(t, s)

[
λmax

{‖x – y‖∞,
∥∥x(s) – Fx(s)

∥∥∞,
∥∥y(s) – Fy(s)

∥∥∞
}

+ r
∣∣QF (x, y, r) – λ

∣∣ + λr – r
]

ds

=
[
λmax

{‖x – y‖∞,
∥∥x(s) – Fx(s)

∥∥∞,
∥∥y(s) – Fy(s)

∥∥∞
}

+ r
∣∣QF (x, y, r) – λ

∣∣ + λr – r
](∫ T


S(t, s) ds

)

≤ λmax
{‖x – y‖∞,

∥∥x(s) – Fx(s)
∥∥∞,

∥∥y(s) – Fy(s)
∥∥∞

}
+ r

∣∣QF (x, y, r) – λ
∣∣ + λr – r
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= λr max

{

r
‖x – y‖∞,


r
∥∥x(s) – Fx(s)

∥∥∞,

r
∥∥y(s) – Fy(s)

∥∥∞

}

+ r
∣∣QF (x, y, r) – λ

∣∣ + λr – r

= λr max

{

r
‖x – y‖∞ + ,


r
‖x – Fx‖∞ + ,


r
‖y – Fy‖∞ + 

}

+ r
∣∣QF (x, y, r) – λ

∣∣ + λr – r – λr

= λr max

{


M(x, y, r)
,


M(x, Fx, r)

,


M(y, Fy, r)

}

+ r
∣∣QF (x, y, r) – λ

∣∣ – r

≤ λrPF (x, y, r) + r
∣∣QF (x, y, r) – λ

∣∣ – r,

and so

‖Fx – Fy‖∞ ≤ λrPf (x, y, r) + r
∣∣Qf (x, y, r) – λ

∣∣ – r.

Now we define α : X × (,∞) → [, +∞) by

α(x, y, r) =

{
r, if θ (x, y) ≥ ,
, otherwise.

Since θ (x, y) ≥ , so, α(x, y, r) = r. Therefore we can write

α(x, y, r)
rM(Fx, Fy, r)

=
r

rM(Fx, Fy, r)
=


M(Fx, Fy, r)

=

r
‖Fx – Fy‖∞ + 

≤ 
r
(
λrPF (x, y, r) + r

∣∣QF (x, y, r) – λ
∣∣ – r

)
+ 

= λPF (x, y, r) +
∣∣QF (x, y, r) – λ

∣∣ –  + 

= λPF (x, y, r) +
∣∣QF (x, y, r) – λ

∣∣.

Thus all of the conditions of Corollary . are satisfied and hence the mapping F has a
fixed point which is a solution of the integral equation (.) in X = C([, T],R). �
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