130 research outputs found

    Increased growth and reduced summer drought limitation at the southern limit of Fagus sylvatica\textit{Fagus sylvatica} L., despite regionally warmer and drier conditions

    Get PDF
    Tree populations at the equatorward edge of their distribution are predicted to respond to increased temperature and drought with declining performance. Empirical studies of Fagus sylvatica\textit{Fagus sylvatica} L., one of the most studied tree species in Europe, have broadly supported these predictions. Using a network of tree ring chronologies from northern Greece, we showed that growth in populations of this species at their southeast distribution limit was limited by summer temperature and precipitation, particularly at low elevations. Furthermore, decadal periods of lower precipitation and higher temperature in the twentieth century were associated with multi-year growth depressions. However, since 1990, growth trends were positive across the network, despite continued dry and hot summer conditions. Growth trends were not correlated with either elevation or tree age. Additionally, correlations between growth and temperature and precipitation were weaker in recent decades. These results are consistent with another recent report from the Balkan Peninsula, and indicate that forests in this region may be more resistant to regional climate change than previously considered.AHP received funding from the Department of Geography, University of Cambridge and Clare College, Cambridge

    Drought and reproductive effort interact to control growth of a temperate broadleaved tree species (Fagus sylvatica)

    Get PDF
    Interannual variation in radial growth is influenced by a range of physiological processes, including variation in annual reproductive effort, although the importance of reproductive allocation has rarely been quantified. In this study, we use long stand-level records of annual seed production, radial growth (tree ring width) and meteorological conditions to analyse the relative importance of summer drought and reproductive effort in controlling the growth of Fagus sylvatica L., a typical masting species. We show that both summer drought and reproductive effort (masting) influenced growth. Importantly, the effects of summer drought and masting were interactive, with the greatest reductions in growth found in years when high reproductive effort (i.e., mast years) coincided with summer drought. Conversely, mast years that coincided with non-drought summers were associated with little reduction in radial growth, as were drought years that did not coincide with mast years. The results show that the strength of an inferred trade-off between growth and reproduction in this species (the cost of reproduction) is dependent on environmental stress, with a stronger trade-off in years with more stressful growing conditions. These results have widespread implications for understanding interannual variability in growth, and observed relationships between growth and climate

    IL-2 Regulates Expression of C-MAF in Human CD4 T Cells

    Get PDF
    Blockade of IL-2R with humanized anti-CD25 Abs, such as daclizumab, inhibits Th2 responses in human T cells. Recent murine studies have shown that IL-2 also plays a significant role in regulating Th2 cell differentiation by activated STAT5. To explore the role of activated STAT5 in the Th2 differentiation of primary human T cells, we studied the mechanisms underlying IL-2 regulation of C-MAF expression. Chromatin immunoprecipitation studies revealed that IL-2 induced STAT5 binding to specific sites in the C-MAF promoter. These sites corresponded to regions enriched for markers of chromatin architectural features in both resting CD4 and differentiated Th2 cells. Unlike IL-6, IL-2 induced C-MAF expression in CD4 T cells with or without prior TCR stimulation. TCR-induced C-MAF expression was significantly inhibited by treatment with daclizumab or a JAK3 inhibitor, R333. Furthermore, IL-2 and IL-6 synergistically induced C-MAF expression in TCR-activated T cells, suggesting functional cooperation between these cytokines. Finally, both TCR-induced early IL4 mRNA expression and IL-4 cytokine expression in differentiated Th2 cells were significantly inhibited by IL-2R blockade. Thus, our findings demonstrate the importance of IL-2 in Th2 differentiation in human T cells and support the notion that IL-2R–directed therapies may have utility in the treatment of allergic disorders

    Nutrient scarcity as a selective pressure for mast seeding

    Get PDF
    Mast seeding is one of the most intriguing reproductive traits in nature. Despite its potential drawbacks in terms of fitness, the widespread existence of this phenomenon suggests that it should have evolutionary advantages under certain circumstances. Using a global dataset of seed production time series for 219 plant species from all the continents, we tested whether masting behaviour appears predominantly in species with low foliar N and P concentrations, when controlling for local climate and productivity. Here we show that masting intensity is higher in species with low foliar N and P concentrations and especially imbalanced N:P ratios, and that the evolutionary history of masting behaviour has been linked to that of nutrient economy. Our results support the hypothesis that masting is stronger in species growing under limiting conditions and suggest that this reproductive behaviour might have evolved as an adaptation to nutrient limitations and imbalances

    Climate Change Strengthens Selection for Mast Seeding in European Beech

    Get PDF
    Climate change is altering patterns of seed production worldwide [1–4], but the potential for evolutionary responses to these changes is poorly understood. Masting (synchronous, annually variable seed production by plant populations) is selectively beneficial through economies of scale that decrease the cost of reproduction per surviving offspring [5–7]. Masting is particularly widespread in temperate trees [8, 9] impacting food webs, macronutrient cycling, carbon storage, and human disease risk [10–12], so understanding its response to climate change is important. Here, we analyze inter-individual variability in plant reproductive patterns and two economies of scale—predator satiation and pollination efficiency—and document how natural selection acting upon them favors masting. Four decades of observations for European beech (Fagus sylvatica) show that predator satiation and pollination efficiency select for individuals with higher inter-annual variability of reproduction and higher reproductive synchrony between individuals. This result confirms the long-standing theory that masting, a population-level phenomenon, is generated by selection on individuals. Furthermore, recent climate-driven increases in mean seed production have increased selection pressure from seed predators but not from pollination efficiency. Natural selection is thus acting to restore the fitness benefits of masting, which have previously decreased under a warming climate [13]. However, selection will likely take far longer (centuries) than climate warming (decades), so in the short-term, tree reproduction will be reduced because masting has become less effective at satiating seed predators. Over the long-term, evolutionary responses to climate change could potentially increase inter-annual variability of seed production of masting species

    Climate warming causes mast seeding to break down by reducing sensitivity to weather cues

    Get PDF
    Climate change is altering patterns of seed production worldwide with consequences for population recruitment and migration potential. For the many species that regenerate through synchronized, quasiperiodic reproductive events termed masting, these changes include decreases in the synchrony and interannual variation in seed production. This breakdown in the occurrence of masting features harms reproduction by decreasing the efficiency of pollination and increasing seed predation. Changes in masting are often paralleled by warming temperatures, but the underlying proximate mechanisms are unknown. We used a unique 39-year study of 139 European beech (Fagus sylvatica) trees that experienced masting breakdown to track the seed developmental cycle and pinpoint phases where weather effects on seed production have changed over time. A cold followed by warm summer led to large coordinated flowering efforts among plants. However, trees failed to respond to the weather signal as summers warmed and the frequency of reproductive cues changed fivefold. Less synchronous flowering resulted in less efficient pollination that further decreased the synchrony of seed maturation. As global temperatures are expected to increase this century, perennial plants that fine-tune their reproductive schedules based on temperature cues may suffer regeneration failures

    The influence of masting phenomenon on growth-climate relationships in trees: Explaining the influence of previous summers' climate on ring width

    Get PDF
    Tree growth is frequently linked to weather conditions prior to the growing season but our understanding of these lagged climate signatures is still poorly developed. We investigated the influence of masting behaviour on the relationship between growth and climate in European Beech (Fagus sylvatica L.) using a rare long-term dataset of seed production and a new regional tree ring chronology. Fagus sylvatica is a masting species with synchronous variations in seed production which are strongly linked to the temperature in the previous two summers. We noted that the weather conditions associated with years of heavy seed production (mast years) were the same as commonly reported correlations between growth and climate for this species. We tested the hypothesis that a trade-off between growth and reproduction in mast years could be responsible for the observed lagged correlations between growth and previous summers' temperatures. We developed statistical models of growth based on monthly climate variables, and show that summer drought (negative correlation), temperature of the previous summer (negative) and temperature of the summer 2 years previous (positive) are significant predictors of growth. Replacing previous summers' temperature in the model with annual seed production resulted in a model with the same predictive power, explaining the same variance in growth. Masting is a common behaviour in many tree species and these findings therefore have important implications for the interpretation of general climate-growth relationships. Lagged correlations can be the result of processes occurring in the year of growth (that are determined by conditions in previous years), obviating or reducing the need for 'carry-over' processes such as carbohydrate depletion to be invoked to explain this climate signature in tree rings. Masting occurs in many tree species and these findings therefore have important implications for the interpretation of general climate-growth relationships

    Two centuries of masting data for European beech and Norway spruce across the European continent

    Get PDF
    Tree masting is one of the most intensively studied ecological processes. It affects nutrient fluxes of trees, regeneration dynamics in forests, animal population densities, and ultimately influences ecosystem services. Despite a large volume of research focused on masting, its evolutionary ecology, spatial and temporal variability and environmental drivers are still matter of debate. Understanding the proximate and ultimate causes of masting at broad spatial and temporal scales will enable us to predict tree reproductive strategies and their response to changing environment. Here we provide broad spatial (distribution range-wide) and temporal (century) masting data for the two main masting tree species in Europe, European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.). We collected masting data from a total of 359 sources through an extensive literature review and from unpublished surveys. The dataset has a total of 1747 series and 18348 yearly observations from 28 countries and covering a time span of years 1677-2016 and 1791-2016 for beech and spruce, respectively. For each record, the following information is available: identification code; species; year of observation; proxy of masting (flower, pollen, fruit, seed, dendrochronological reconstructions); statistical data type (ordinal, continuous); data value; unit of measurement (only in case of continuous data); geographical location (country, Nomenclature of Units for Territorial Statistics NUTS-1 level, municipality, coordinates); first and last record year and related length; type of data source (field survey, peer reviewed scientific literature, grey literature, personal observation); source identification code; date when data were added to the database; comments. To provide a ready-to-use masting index we harmonized ordinal data into five classes. Furthermore, we computed an additional field where continuous series with length >4 years where converted into a five classes ordinal index. To our knowledge, this is the most comprehensive published database on species-specific masting behaviour. It is useful to study spatial and temporal patterns of masting and its proximate and ultimate causes, to refine studies based on tree-ring chronologies, to understand dynamics of animal species and pests vectored by these animals affecting human health, and it may serve as calibration-validation data for dynamic forest models.The paper was partly funded by the “Fondo di Ricerca Locale 2015-2016” of the University of Torino and by the Stiftelsen Stina Werners fond (grant SSWF 10-1/29-3 to I.D.)
    • …
    corecore