13,173 research outputs found

    The light Higgs in supersymmetric models with Higgs triplets

    Full text link
    In supersymmetric models the presence of Higgs triplets introduce new quartic interactions for the doublets that may raise the mass of the lightest CP-even field up to 205 GeV. We show that the complete effect of the triplets can be understood by decoupling them from the minimal sector and then analyzing the vacuum and the spectrum of the two-Higgs doublet model that results. We find that the maximum value of m_h is only achieved in a very definite region of the parameter space. In this region, however, radiative corrections decrease the bound to 190 GeV.Comment: 10 pages, 1 figur

    Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    Full text link
    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.Comment: 6 pages, 1 figur

    Preserving the validity of the Two-Higgs Doublet Model up to the Planck scale

    Full text link
    We examine the constraints on the two Higgs doublet model (2HDM) due to the stability of the scalar potential and absence of Landau poles at energy scales below the Planck scale. We employ the most general 2HDM that incorporates an approximately Standard Model (SM) Higgs boson with a flavor aligned Yukawa sector to eliminate potential tree-level Higgs-mediated flavor changing neutral currents. Using basis independent techniques, we exhibit robust regimes of the 2HDM parameter space with a 125 GeV SM-like Higgs boson that is stable and perturbative up to the Planck scale. Implications for the heavy scalar spectrum are exhibited.Comment: 36 pages, 4 figures, 4 tables (Version 3: typographical error in eq. (A.28) corrected

    Implications of symmetries in the scalar sector

    Get PDF
    Symmetries play a very important r\^ole in Particle Physics. In extended scalar sectors, the existence of symmetries may permit the models to comply with the experimental constraints in a natural way, and at the same time reduce the number of free parameters. There is a strong interplay among internal symmetries of the scalar potential, its CP properties and mass degeneracies of the physical scalars. Some of these aspects were discussed in this talk.Comment: 8 pages, to be published in the Proceedings of DISCRETE2018: 6th Symposium on Prospects in the Physics of Discrete Symmetries, 26-30 Nov 2018. Vienna, Austri

    Symmetries and Mass Degeneracies in the Scalar Sector

    Get PDF
    We explore some aspects of models with two and three SU(2) scalar doublets that lead to mass degeneracies among some of the physical scalars. In Higgs sectors with two scalar doublets, the exact degeneracy of scalar masses, without an artificial fine-tuning of the scalar potential parameters, is possible only in the case of the inert doublet model (IDM), where the scalar potential respects a global U(1) symmetry that is not broken by the vacuum. In the case of three doublets, we introduce and analyze the replicated inert doublet model, which possesses two inert doublets of scalars. We then generalize this model to obtain a scalar potential, first proposed by Ivanov and Silva, with a CP4 symmetry that guarantees the existence of pairwise degenerate scalar states among two pairs of neutral scalars and two pairs of charged scalars. Here, CP4 is a generalized CP symmetry with the property that (CP4)n({\rm CP}4)^n is the identity operator only for integer nn values that are multiples of 4. The form of the CP4-symmetric scalar potential is simplest when expressed in the Higgs basis, where the neutral scalar field vacuum expectation value resides entirely in one of the scalar doublet fields. The symmetries of the model permit a term in the scalar potential with a complex coefficient that cannot be removed by any redefinition of the scalar fields within the class of Higgs bases (in which case, we say that no real Higgs basis exists). A striking feature of the CP4-symmetric model is that it preserves CP even in the absence of a real Higgs basis, as illustrated by the cancellation of the contributions to the CP violating form factors of the effective ZZZ and ZWW vertices.Comment: 52 pages, 2 figures, second revised version with new material, as published by JHE

    Mass-degenerate Higgs bosons at 125 GeV in the Two-Higgs-Doublet Model

    Get PDF
    The analysis of the Higgs boson data by the ATLAS and CMS Collaborations appears to exhibit an excess of h --> gamma\gamma events above the Standard Model (SM) expectations; whereas no significant excess is observed in h --> ZZ* --> {four lepton} events, albeit with large statistical uncertainty due to the small data sample. These results (assuming they persist with further data) could be explained by a pair of nearly mass-degenerate scalars, one of which is a SM-like Higgs boson and the other is a scalar with suppressed couplings to W+W- and ZZ. In the two Higgs doublet model, the observed \gamma\gamma and ZZ* --> {four lepton} data can be reproduced by an approximately degenerate CP-even (h) and CP-odd (A) Higgs boson for values of \sin(\beta-\alpha) near unity and 0.7 < \tan\beta < 1. An enhanced \gamma\gamma signal can also arise in cases where m_h ~ m_H, m_H ~ m_A, or m_h ~ m_H ~ m_A. Since the ZZ* --> {four lepton} signal derives primarily from a SM-like Higgs boson whereas the \gamma\gamma signal receives contributions from two (or more) nearly mass-degenerate states, one would expect a slightly different invariant mass peak in the ZZ* --> {four lepton} and \gamma\gamma channels. The phenomenological consequences of such models can be tested with additional Higgs data that will be collected at the LHC in the near future.Comment: 18 pages, 19 pdf figures, v2: references added, v3&v4: added refs and explanation

    Radio Frequency Interference /RFI/ design guide for aerospace communications systems

    Get PDF
    Radio frequency interference design guide for aerospace communications system

    On Bose-Einstein condensation on closed Robertson-Walker spacetimes

    Get PDF
    In this letter we summarize our analysis of Bose-Einstein condensation on closed Robertson-Walker spacetimes. In a previous work we defined an adiabatic KMS state on the Weyl-algebra of the free massive Klein-Gordon field. This state describes a free Bose gas on Robertson-Walker spacetimes. We use this state to analyze the possibility of Bose-Einstein condensation on closed Robertson-Walker spacetimes. We take into account the effects due to the finiteness of the spatial volume and show that they are not relevant in the early universe. Furthermore we show that a critical radius can be defined. The condensate disappears above the critical radius.Comment: 9 pages, 1 figure, uses elsart.cl
    corecore