1,015 research outputs found

    Lattice QCD gluon propagators near transition temperature

    Full text link
    Landau gauge gluon propagators are studied numerically in the SU(3) gluodynamics as well as in the full QCD with the number of flavors nF=2n_F=2 using efficient gauge fixing technique. We compare these propagators at temperatures very close to the transition point in two phases : confinement and deconfinement. The electric mass mEm_E has been determined from the momentum space longitudinal gluon propagator. Gribov copy effects are found to be rather strong in the gluodynamics, while in the full QCD case they are weak ("Gribov noise"). Also we analyse finite volume dependence of the transverse and longitudinal propagators.Comment: 9 pages, 7 figure

    Structural behaviour of hybrid elements with Advanced Cementitious Materials (HPFRCC)

    Get PDF
    Advanced Cementitious Materials such as HPFRCC are well adapted for durable repair and strengthening of concrete structures. Experimental and numerical investigations have been conducted to study the behavior of hybrid structural elements consisting of HPFRCC and ordinary concrete. The behavior at service state as well as at ultimate limit state of the beams reinforced with HPFRCC was comparable or better than the behavior of the beams reinforced with ordinary reinforced concrete. The sensitivity of numerical models for hardening materials such as HPFRCC was demonstrated

    East African coastal forest under pressure

    Get PDF
    The Arabuko Sokoke dryland coastal forest along the East African coastline provides a unique habitat for many endangered endemic animal and plant species. High demographic pressure with subsequent land-splitting, soil depletion in combination with erratic rainfalls and the collapse of the tourism industry are negatively affecting food security and human livelihood quality in this region. Food crops were originally produced by subsistence farming, but have now to be purchased at local-and super-markets, constituting a major financial burden for the local people. In consequence, overexploitation of natural resources from Arabuko Sokoke forest (illegal logging, charcoal burning, poaching of wild animals) increased during the past years. In this commentary we document ecosystem heterogeneity leading to high species richness. We discuss direct and indirect drivers of habitat degradation of the Arabuko Sokoke forest, and critically reflect current and future solutions. Key drivers of habitat destruction and biodiversity loss are (i) illegal timber logging and removal of woody biomass, (ii) poaching of bush-meat, (iii) exceeding of the carrying capacity by the local elephant population, restricted to Arabuko Sokoke by an electric fence, and (iv) weak governance structures and institutional confusion exacerbating illegal exploitation of natural resources. Potential solutions might be: Provisioning of additional income sources; reforestation of the surrounding areas in the framework of REDD+ activities to create a buffer around the remaining primary forest; improving governance structures that formulates clear guidelines on future usage and protection of natural resources within the Arabuko Sokoke forest; and family planning to counteract human demographic pressure and the exploitation of natural resources

    Gluon Propagator in the Infrared Region

    Get PDF
    The gluon propagator is calculated in quenched QCD for two different lattice sizes (16^3x48 and 32^3x64) at beta=6.0. The volume dependence of the propagator in Landau gauge is studied. The smaller lattice is instrumental in revealing finite volume and anisotropic lattice artefacts. Methods for minimising these artefacts are developed and applied to the larger lattice data. New structure seen in the infrared region survives these conservative cuts to the lattice data. This structure serves to rule out a number of models that have appeared in the literature. A fit to a simple analytical form capturing the momentum dependence of the nonperturbative gluon propagator is also reported.Comment: 13 pages, 9 figures, using RevTeX. Submitted to Phys. Rev. D. This and related papers can also be obtained from http://www.physics.adelaide.edu.au/~jskuller/papers

    Evaluation of the Self-healing Capability of Ultra-High-Performance Fiber-Reinforced Concrete with Nano-Particles and Crystalline Admixtures by Means of Permeability

    Full text link
    [EN] Self-healing is the capability of a material to repair its damage autonomously. Ultra-High-Performance Fiber Reinforced Concrete (UHPFRC) has potentially higher self-healing properties than conventional concrete because of its lower water/binder content and controlled microcracking due to the high fiber content. This work uses a novel methodology based on the permeability to evaluate autogenous self-healing of UHPFRC and enhanced self-healing, incorporating several additions. To this purpose, one UHPFRC was selected and modified to include alumina nanofibers in 0.25% by the cement weight, nanocellulose (nanocrystals and nanofibers), in a dosage of 0.15% by the cement weight, and 0.8-1.6% of a crystalline admixture. The results obtained show that the methodology proposed allows the evaluation of the self-healing capability of different families of concrete mixes that suffered a similar level of damage using permeability tests adapted to the specific properties of UHPFRC.The authors would like to acknowledge the European Union¿s Horizon 2020 ReSHEALience project (Grant Agreement No. 760824).Doostkami, H.; Roig-Flores, M.; Negrini, A.; Mezquida-Alcaraz, EJ.; Serna Ros, P. (2020). Evaluation of the Self-healing Capability of Ultra-High-Performance Fiber-Reinforced Concrete with Nano-Particles and Crystalline Admixtures by Means of Permeability. Springer. 489-499. https://doi.org/10.1007/978-3-030-58482-5_45489499Homma, D., Mihashi, H., Nishiwaki, T.: Self-healing capability of fibre reinforced cementitious composites. J. Adv. Concr. Technol. 7(2), 217–228 (2009)Maes, M., Snoeck, D., De Belie, N.: Chloride penetration in cracked mortar and the influence of autogenous crack healing. Constr. Build. Mater. 115, 114–124 (2016)Edvardsen, C.: Water Permeability and Autogenous Healing of Cracks in Concrete, vol. 96 (1999)De Belie, N., et al.: A review of self-healing concrete for damage management of structures. Adv. Mater. Interfaces 5(17) (2018)Wang, H.L., Dai, J.G., Sun, X.Y., Zhang, X.L.: Characteristics of concrete cracks and their influence on chloride penetration. Constr. Build. Mater. 107, 216–225 (2016)Wang, K., Jansen, D.C., Shah, S.P., Karr, A.F.: Permeability study of cracked concrete. Cem. Concr. Res. (1997)Šavija, B., Schlangen, E.: Autogeneous healing and chloride ingress in cracked concrete. Heron 61(1), 15–32 (2016)Ismail, M., Toumi, A., François, R., Gagné, R.: Effect of crack opening on the local diffusion of chloride in cracked mortar samples. Cem. Concr. Res. 38(8–9), 1106–1111 (2008)Habel, K., Gauvreau, P.: Response of ultra-high performance fiber reinforced concrete (UHPFRC) to impact and static loading. Cem. Concr. Compos. 30(10), 938–946 (2008)Denarié, E., Brühwiler, E.: Strain-hardening ultra-high performance fibre reinforced concrete: deformability versus strength optimization. Restor. Build. Monum. 17(6), 397–410 (2014)Granger, S., Pijaudier-Cabot, G., Loukili, A.: Mechanical behavior of self-healed ultra high performance concrete: from experimental evidence to modeling. In: Proceedings of the 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, vol. 3, pp. 1827–1834 (2007)Escoffres, P., Desmettre, C., Charron, J.P.: Effect of a crystalline admixture on the self-healing capability of high-performance fiber reinforced concretes in service conditions. Constr. Build. Mater. 173, 763–774 (2018)Sisomphon, K., Copuroglu, O., Koenders, E.A.B.: Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 34(4), 566–574 (2012)Roig-Flores, M., Moscato, S., Serna, P., Ferrara, L.: Self-healing capability of concrete with crystalline admixtures in different environments. Constr. Build. Mater. 86, 1–11 (2015)Roig-Flores, M., Pirritano, F., Serna, P., Ferrara, L.: Effect of crystalline admixtures on the self-healing capability of early-age concrete studied by means of permeability and crack closing tests. Constr. Build. Mater. 114, 447–457 (2016)Ferrara, L., Krelani, V., Carsana, M.: A ‘fracture testing’ based approach to assess crack healing of concrete with and without crystalline admixtures. Constr. Build. Mater. 68, 535–551 (2014)Ferrara, L., Krelani, V., Moretti, F.: On the use of crystalline admixtures in cement based construction materials: from porosity reducers to promoters of self healing. Smart Mater. Struct. 25(8), 1–17 (2016)Cuenca, E., Cislaghi, G., Puricelli, M., Ferrara, L.: Influence of self-healing stimulated via crystalline admixtures on chloride penetration. In: America Concrete Institute, vol. 2018(SP 326), pp. 1–10. ACI Spec. Publ. (2018)Borg, R.P., Cuenca, E., Gastaldo Brac, E.M., Ferrara, L.: Crack sealing capacity in chloride-rich environments of mortars containing different cement substitutes and crystalline admixtures. J. Sustain. Cem. Mater. 7(3), 141–159 (2018)López, J.Á., Serna, P., Navarro-Gregori, J., Camacho, E.: An inverse analysis method based on deflection to curvature transformation to determine the tensile properties of UHPFRC. Mater. Struct. 48(11), 3703–3718 (2014). https://doi.org/10.1617/s11527-014-0434-0López, J.Á.: Characterisation of the Tensile Behaviour of UHPFRC By Means of Four-Point Bending Tests, March 2017Negrini, A., Roig-Flores, M., Mezquida-Alcaraz, E.J., Ferrara, L., Serna, P.: Effect of crack pattern on the self-healing capability in traditional, HPC and UHPFRC concretes measured by water and chloride permeability. In: MATEC Web Conference, vol. 289, p. 01006 (2019

    Моделирование поглощения электронного пучка микротрона модифицированным ABS-пластиком

    Get PDF
    Emotions influence our everyday life in several ways. With the present study, we wanted to examine the impact of emotional information on neural correlates of semantic priming, a well-established technique to investigate semantic processing. Stimuli were presented with a short SOA of 200 ms as subjects performed a lexical decision task during fMRI measurement. Seven experimental conditions were compared: positive/negative/neutral related, positive/negative/neutral unrelated, nonwords (all words were nouns). Behavioral data revealed a valence specific semantic priming effect (i.e., unrelated > related) only for neutral and positive related word pairs. On a neural level, the comparison of emotional over neutral relations showed activation in left anterior medial frontal cortex, superior frontal gyrus, and posterior cingulate. Interactions for the different relations were located in left anterior part of the medial frontal cortex, cingulate regions, and right hippocampus ( positive > neutral + negative) and left posterior part of medial frontal cortex (negative > neutral + positive). The results showed that emotional information have an influence on semantic association processes. While positive and neutral information seem to share a semantic network, negative relations might induce compensatory mechanisms that inhibit the spread of activation between related concepts. The neural correlates highlighted a distributed neural network, primarily involving attention, memory and emotion related processing areas in medial fronto-parietal cortices. The differentiation between anterior (positive) and posterior part (negative) of the medial frontal cortex was linked to the type of affective manipulation with more cognitive demands being involved in the automatic processing of negative information

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Analytic properties of the Landau gauge gluon and quark propagators

    Full text link
    We explore the analytic structure of the gluon and quark propagators of Landau gauge QCD from numerical solutions of the coupled system of renormalized Dyson--Schwinger equations and from fits to lattice data. We find sizable negative norm contributions in the transverse gluon propagator indicating the absence of the transverse gluon from the physical spectrum. A simple analytic structure for the gluon propagator is proposed. For the quark propagator we find evidence for a mass-like singularity on the real timelike momentum axis, with a mass of 350 to 500 MeV. Within the employed Green's functions approach we identify a crucial term in the quark-gluon vertex that leads to a positive definite Schwinger function for the quark propagator.Comment: 42 pages, 16 figures, revtex; version to be published in Phys Rev
    corecore