20 research outputs found

    Recombination and large structural variations shape interspecific edible bananas genomes

    Get PDF
    Admixture and polyploidization are major recognized eukaryotic genome evolutionary processes. Their impacts on genome dynamics vary among systems and are still partially deciphered. Many banana cultivars are triploid (sometimes diploid) interspecific hybrids between Musa acuminata (A genome) and M. balbisiana (B genome). They have no or very low fertility, are vegetatively propagated and have been classified as 'AB', 'AAB' or 'ABB' based on morphological characters. We used NGS sequence data to characterize the A vs. B chromosome composition of nine diploid and triploid interspecific cultivars, to compare the chromosome structures of A and B genomes and analyze A/B chromosome segregations in a polyploid context. We showed that interspecific recombination occurred frequently between A and B chromosomes. We identified two large structural variations between A and B genomes, a reciprocal translocation and an inversion that locally affected recombination and led to segregation distortion and aneuploidy in a triploid progeny. Interspecific recombination and large structural variations explained the mosaic genomes observed in edible bananas. The unprecedented resolution in deciphering their genome structure allowed us to start revisiting the origins of banana cultivars and provided new information to gain insight into the impact of interspecificity on genome evolution. It will also facilitate much more effective assessment of breeding strategies

    Learning a CNN on multiple sclerosis lesion segmentation with self-supervision

    Get PDF
    Best paper awardInternational audienceMultiple Sclerosis (MS) is a chronic, often disabling, auto-immune disease affecting the central nervous system and characterized by demyelination and neuropathic alterations. Magnetic Resonance (MR) images plays a pivotal role in the diagnosis and the screening of MS. MR images identify and localize demyelinat-ing lesions (or plaques) and possible associated atrophic lesions whose MR aspect is in relation with the evolution of the disease. We propose a novel MS lesions segmentation method for MR images, based on Convolutional Neural Networks (CNNs) and partial self-supervision and studied the pros and cons of using self-supervision for the current segmentation task. Investigating the transferability by freezing the firsts convolutional layers, we discovered that improvements are obtained when the CNN is retrained from the first layers. We believe such results suggest that MRI segmentation is a singular task needing high level analysis from the very first stages of the vision process, as opposed to vision tasks aimed at day-today life such as face recognition or traffic sign classification. The evaluation of segmentation quality has been performed on full image size binary maps assembled from predictions on image patches from an unseen database

    Exploration and Identification of Cortico-Cerebellar-Brainstem Closed Loop during a Motivational-Motor Task : An fMRI Study

    Get PDF
    Epub ahead of printThe cerebellum is involved not only in motor coordination, training, and memory, but also in cognition and emotion. Lobule VI in particular belongs to sensorimotor, salience, and executive cerebellar networks. This study aims to determine whether lobule VI would constitute an integrative interface between motor and cognitive/emotional circuits during a motor task with verbal encouragement, likely in conjunction with the basal ganglia (reward and motivational system). We used fMRI to identify specific recruitment of cerebellar and striatal systems during physical performance using two motor tasks with and without encouragement. We found that: (i) Force results were higher during verbal encouragement than during basal condition in all participants. (ii) The anterior part of the right lobule VI was activated by motor execution in both tasks, while its posterior part was specifically activated by verbal encouragement. (iii) The closed-connectivity loop maintained motivation induced by verbal encouragement between cerebral and cerebellar through the red nucleus and striatal network. Therefore, right lobule VI is a hub-controlling sensorimotor and motivates aspects of motor performance in relation with the red nucleus and the ventral striatum. These results could have important implications for extrapyramidal and multisystem degenerative diseases
    corecore