15,831 research outputs found
Manufacturing checkout of orbital operational stages Midterm report, period ending 24 Feb. 1965
Manufacturing checkout of orbital operational Saturn S-IVB stage and instrument unit for parking orbit operation
Collective excitations and low temperature transport properties of bismuth
We examine the influence of collective excitations on the transport
properties (resistivity, magneto- optical conductivity) for semimetals,
focusing on the case of bismuth. We show, using an RPA approximation, that the
properties of the system are drastically affected by the presence of an
acoustic plasmon mode, consequence of the presence of two types of carriers
(electrons and holes) in this system. We found a crossover temperature T*
separating two different regimes of transport. At high temperatures T > T* we
show that Baber scattering explains quantitatively the DC resistivity
experiments, while at low temperatures T < T* interactions of the carriers with
this collective mode lead to a T^5 behavior of the resistivity. We examine
other consequences of the presence of this mode, and in particular predict a
two plasmon edge feature in the magneto-optical conductivity. We compare our
results with the experimental findings on bismuth. We discuss the limitations
and extensions of our results beyond the RPA approximation, and examine the
case of other semimetals such as graphite or 1T-TiSe_2
The uniting of Europe and the foundation of EU studies: revisiting the neofunctionalism of Ernst B. Haas
This article suggests that the neofunctionalist theoretical legacy left by Ernst B. Haas is somewhat richer and more prescient than many contemporary discussants allow. The article develops an argument for routine and detailed re-reading of the corpus of neofunctionalist work (and that of Haas in particular), not only to disabuse contemporary students and scholars of the normally static and stylized reading that discussion of the theory provokes, but also to suggest that the conceptual repertoire of neofunctionalism is able to speak directly to current EU studies and comparative regionalism. Neofunctionalism is situated in its social scientific context before the theory's supposed erroneous reliance on the concept of 'spillover' is discussed critically. A case is then made for viewing Haas's neofunctionalism as a dynamic theory that not only corresponded to established social scientific norms, but did so in ways that were consistent with disciplinary openness and pluralism
Probing the Light Pseudoscalar Window
Very light pseudoscalars can arise from the symmetry-breaking sector in many
extensions of the Standard Model. If their mass is below 200 MeV, they can be
long-lived and have interesting phenomenology. We discuss the experimental
constraints on several models with light pseudoscalars, including one in which
the pseudoscalar is naturally fermiophobic. Taking into account the stringent
bounds from rare K and B decays, we find allowed parameter space in each model
that may be accessible in direct production experiments. In particular, we
study the photoproduction of light pseudoscalars at Jefferson Lab and conclude
that a beam dump experiment could explore some of the allowed parameter space
of these models.Comment: 22 pages, 4 figure
Depolarisation cooling of an atomic cloud
We propose a cooling scheme based on depolarisation of a polarised cloud of
trapped atoms. Similar to adiabatic demagnetisation, we suggest to use the
coupling between the internal spin reservoir of the cloud and the external
kinetic reservoir via dipolar relaxation to reduce the temperature of the
cloud. By optical pumping one can cool the spin reservoir and force the cooling
process. In case of a trapped gas of dipolar chromium atoms, we show that this
cooling technique can be performed continuously and used to approach the
critical phase space density for BECComment: 8 pages, 5 figure
Density of bulk trap states in organic semiconductor crystals: discrete levels induced by oxygen in rubrene
The density of trap states in the bandgap of semiconducting organic single
crystals has been measured quantitatively and with high energy resolution by
means of the experimental method of temperature-dependent
space-charge-limited-current spectroscopy (TD-SCLC). This spectroscopy has been
applied to study bulk rubrene single crystals, which are shown by this
technique to be of high chemical and structural quality. A density of deep trap
states as low as ~ 10^{15} cm^{-3} is measured in the purest crystals, and the
exponentially varying shallow trap density near the band edge could be
identified (1 decade in the density of states per ~25 meV). Furthermore, we
have induced and spectroscopically identified an oxygen related sharp hole bulk
trap state at 0.27 eV above the valence band.Comment: published in Phys. Rev. B, high quality figures:
http://www.cpfs.mpg.de/~krellner
Reexamining Black-Body Shifts for Hydrogenlike Ions
We investigate black-body induced energy shifts for low-lying levels of
atomic systems, with a special emphasis on transitions used in current and
planned high-precision experiments on atomic hydrogen and ionized helium.
Fine-structure and Lamb-shift induced black-body shifts are found to increase
with the square of the nuclear charge number, whereas black-body shifts due to
virtual transitions decrease with increasing nuclear charge as the fourth power
of the nuclear charge. We also investigate the decay width acquired by the
ground state of atomic hydrogen, due to interaction with black-body photons.
The corresponding width is due to an instability against excitation to higher
excited atomic levels, and due to black-body induced ionization. These effects
limit the lifetime of even the most fundamental, a priori absolutely stable,
"asymptotic" state of atomic theory, namely the ground state of atomic
hydrogen.Comment: 11 pages; LaTe
Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma
A self-consistent relativistic two-fluid model is proposed for
one-dimensional electron-ion plasma dynamics. A multiple scales perturbation
technique is employed, leading to an evolution equation for the wave envelope,
in the form of a nonlinear Schr\"odinger type equation (NLSE). The inclusion of
relativistic effects is shown to introduce density-dependent factors, not
present in the non-relativistic case - in the conditions for modulational
instability. The role of relativistic effects on the linear dispersion laws and
on envelope soliton solutions of the NLSE is discussed.Comment: Submitted to Physics of Plasma
Generalized Hamiltonian structures for Ermakov systems
We construct Poisson structures for Ermakov systems, using the Ermakov
invariant as the Hamiltonian. Two classes of Poisson structures are obtained,
one of them degenerate, in which case we derive the Casimir functions. In some
situations, the existence of Casimir functions can give rise to superintegrable
Ermakov systems. Finally, we characterize the cases where linearization of the
equations of motion is possible
- âŠ