16,342 research outputs found

    Turbine for ordnance turbojet engine. 2: Cold-air performance with opened stator

    Get PDF
    A single-stage axial-flow turbine was investigated to determine the effect of increased stator throat area on the performance level of a turbojet engine turbine. The stator blades were bent to increase the throat area in order to move the compressor operating point in the engine farther away from surge. Results are compared with those obtained with the as-cast stator setting

    The uniting of Europe and the foundation of EU studies: revisiting the neofunctionalism of Ernst B. Haas

    Get PDF
    This article suggests that the neofunctionalist theoretical legacy left by Ernst B. Haas is somewhat richer and more prescient than many contemporary discussants allow. The article develops an argument for routine and detailed re-reading of the corpus of neofunctionalist work (and that of Haas in particular), not only to disabuse contemporary students and scholars of the normally static and stylized reading that discussion of the theory provokes, but also to suggest that the conceptual repertoire of neofunctionalism is able to speak directly to current EU studies and comparative regionalism. Neofunctionalism is situated in its social scientific context before the theory's supposed erroneous reliance on the concept of 'spillover' is discussed critically. A case is then made for viewing Haas's neofunctionalism as a dynamic theory that not only corresponded to established social scientific norms, but did so in ways that were consistent with disciplinary openness and pluralism

    Interplay of size and Landau quantizations in the de Haas-van Alphen oscillations of metallic nanowires

    Get PDF
    We examine the interplay between size quantization and Landau quantization in the De Haas-Van Alphen oscillations of clean, metallic nanowires in a longitudinal magnetic field for `hard' boundary conditions, i.e. those of an infinite round well, as opposed to the `soft' parabolically confined boundary conditions previously treated in Alexandrov and Kabanov (Phys. Rev. Lett. {\bf 95}, 076601 (2005) (AK)). We find that there exist {\em two} fundamental frequencies as opposed to the one found in bulk systems and the three frequencies found by AK with soft boundary counditions. In addition, we find that the additional `magic resonances' of AK may be also observed in the infinite well case, though they are now damped. We also compare the numerically generated energy spectrum of the infinite well potential with that of our analytic approximation, and compare calculations of the oscillatory portions of the thermodynamic quantities for both models.Comment: Title changed, paper streamlined on suggestion of referrees, typos corrected, numerical error in figs 2 and 3 corrected and final result simplified -- two not three frequencies (as in the previous version) are observed. Abstract altered accordingly. Submitted to Physical Review

    Can HERA See an eu−−>ece u --> e c Signal of a Virtual Leptoquark?

    Full text link
    Virtual leptoquarks could be detected at HERA through some nonstandard effects. Here we explore the possibility that virtual leptoquarks could be discovered via eu−−>ece u --> e c scattering, assuming integrated luminosity of 200 pb−1^{-1} and charm identification efficiency of 1%. We study the implications of low energy data for the leptoquarks couplings and find that the most relevant bound for the HERA cross sections comes from inclusive c−−>e+e− + anyc --> e^+e^-~+~any. This bound implies that the eu−−>ece u --> e c cross sections for virtual leptoquarks are just too small for observation of the signal. With an improvement by a factor of ~2 on the luminosity or on charm identification it could be possible to see virtual leptoquarks with {\it maximum couplings} up to ~1.5 - 2 TeV. However, the prospects for discovering the virtual particles if their couplings are somewhat below present bounds are very dim. We point out that this cross section could be very large for leptoquarks lighter than HERA's kinematical limit, and if such a leptoquark is discovered we recommend searching for a possible eu−−>ece u --> e c signal. Our results may also serve as an update on the maximum cross sections for leptoquark mediated eu−−>ÎŒce u --> \mu c scattering.Comment: 15 Pages (LaTeX), including 4 postscript figures at the end of the file. Feynman diagrams available by reques

    Mode-sum regularization of the scalar self-force: Formulation in terms of a tetrad decomposition of the singular field

    Get PDF
    We examine the motion in Schwarzschild spacetime of a point particle endowed with a scalar charge. The particle produces a retarded scalar field which interacts with the particle and influences its motion via the action of a self-force. We exploit the spherical symmetry of the Schwarzschild spacetime and decompose the scalar field in spherical-harmonic modes. Although each mode is bounded at the position of the particle, a mode-sum evaluation of the self-force requires regularization because the sum does not converge: the retarded field is infinite at the position of the particle. The regularization procedure involves the computation of regularization parameters, which are obtained from a mode decomposition of the Detweiler-Whiting singular field; these are subtracted from the modes of the retarded field, and the result is a mode-sum that converges to the actual self-force. We present such a computation in this paper. There are two main aspects of our work that are new. First, we define the regularization parameters as scalar quantities by referring them to a tetrad decomposition of the singular field. Second, we calculate four sets of regularization parameters (denoted schematically by A, B, C, and D) instead of the usual three (A, B, and C). As proof of principle that our methods are reliable, we calculate the self-force acting on a scalar charge in circular motion around a Schwarzschild black hole, and compare our answers with those recorded in the literature.Comment: 38 pages, 2 figure

    Estimating nitrogen flows of agricultural soils at a landscape level – A modelling study of the Upper Enns Valley, a long-term socio-ecological research region in Austria

    Get PDF
    This paper explores the fate of reactive nitrogen (Nr) on the landscape scale of present agricultural production practice on arable and grassland soils. We use the soil modelling tool LandscapeDNDC (landscape scale DeNitrification-DeComposition model) to quantify resulting flows of Nr distributed to the atmosphere, hydrosphere and the crops. Test area is a watershed in the Austrian Alps characterized by arable production in the low-lying areas and grassland in the mountains. The approach considers an overall budget of nitrogen, and determines the nitrogen use efficiency for individual crops and crop rotations, with average levels found at 85% for the arable area and 68-98% for the grassland areas. Modelled Nr flows are compared to the values resulting from the national emission factor (EF) method used for the Austrian emission inventory. For the arable part of the study region, the annual sum of released Nr emissions derived from LandscapeDNDC modelling is lower than the result of the EF method by about 13% (or 7 kg N ha-1). Model results are lower also for other Nr species, yet nitrate leaching rates as well as ammonia emissions contribute a major share. For grassland areas, nitrate leaching values estimated by LandscapeDNDC greatly depend on local specifics and substantially exceed EF estimates. All other modelled Nr species are lower than the EF results. The model set-up allows to characterize spatially explicit effects of mitigation measures. As an example, we identify nitrous oxide (N2O) hot spots in the study region, and we quantify the N2O emission saving potential if focusing reduction efforts to such hot spots. Reducing fertilization of hot spots by half could remove 14% of N2O emission for 5% less crop yield and a loss of grassland yield by <1% when extrapolated to the whole study area

    Reexamining Black-Body Shifts for Hydrogenlike Ions

    Get PDF
    We investigate black-body induced energy shifts for low-lying levels of atomic systems, with a special emphasis on transitions used in current and planned high-precision experiments on atomic hydrogen and ionized helium. Fine-structure and Lamb-shift induced black-body shifts are found to increase with the square of the nuclear charge number, whereas black-body shifts due to virtual transitions decrease with increasing nuclear charge as the fourth power of the nuclear charge. We also investigate the decay width acquired by the ground state of atomic hydrogen, due to interaction with black-body photons. The corresponding width is due to an instability against excitation to higher excited atomic levels, and due to black-body induced ionization. These effects limit the lifetime of even the most fundamental, a priori absolutely stable, "asymptotic" state of atomic theory, namely the ground state of atomic hydrogen.Comment: 11 pages; LaTe

    Order by disorder from non-magnetic impurities in a two-dimensional quantum spin liquid

    Full text link
    We consider doping of non-magnetic impurities in the spin-1/2, 1/5-depleted square lattice. This structure, whose undoped phase diagram offers both magnetically ordered and spin-liquid ground states, is realized physically in CaV_4O_9. Doping into the ordered phase results in a progressive loss of order, which becomes complete at the percolation threshold. By contrast, non-magnetic impurities introduced in the spin liquids create a phase of weak but long-ranged antiferromagnetic order coexisting with the gapped state. The latter may be viewed as a true order-by-disorder phenomenon. We study the phase diagram of the doped system by computing the static susceptibility and staggered magnetization using a stochastic series-expansion quantum Monte Carlo technique.Comment: 4 pages, 5 figure

    Generalized Hamiltonian structures for Ermakov systems

    Full text link
    We construct Poisson structures for Ermakov systems, using the Ermakov invariant as the Hamiltonian. Two classes of Poisson structures are obtained, one of them degenerate, in which case we derive the Casimir functions. In some situations, the existence of Casimir functions can give rise to superintegrable Ermakov systems. Finally, we characterize the cases where linearization of the equations of motion is possible

    Nonlinear structures: explosive, soliton and shock in a quantum electron-positron-ion magnetoplasma

    Full text link
    Theoretical and numerical studies are performed for the nonlinear structures (explosive, solitons and shock) in quantum electron-positron-ion magnetoplasmas. For this purpose, the reductive perturbation method is employed to the quantum hydrodynamical equations and the Poisson equation, obtaining extended quantum Zakharov-Kuznetsov equation. The latter has been solved using the generalized expansion method to obtain a set of analytical solutions, which reflect the possibility of the propagation of various nonlinear structures. The relevance of the present investigation to the white dwarfs is highlighted.Comment: 7 figure
    • 

    corecore