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We examine the interplay between size quantization and Landau quantization in the de Haas–van Alphen
oscillations of clean metallic nanowires in a longitudinal magnetic field for “hard” boundary conditions, i.e.,
those of an infinite round well, as opposed to the “soft” parabolically confined boundary conditions previously
treated in Alexandrov and Kabanov �AK� �Phys. Rev. Lett. 95, 076601 �2005��. We find that there exist two
fundamental frequencies as opposed to the one found in bulk systems and the three frequencies found by AK
with soft boundary counditions. In addition, we find that the additional “magic resonances” of AK may also be
observed in the infinite well case, though they are now damped. We also compare the numerically generated
energy spectrum of the infinite well potential with that of our analytic approximation, and compare calculations
of the oscillatory portions of the thermodynamic quantities for both models.
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I. INTRODUCTION

Since their discovery in 1930,1 and subsequent explana-
tion by Onsager2 and Lifshitz and Kosevitch3 in terms of the
interplay between the Landau quantization and the Fermi
surface, the de Haas–van Alphen �DHVA� oscillations of the
thermodynamic potential, magnetization, and related quanti-
ties have acquired a long history of use as a method of prob-
ing the structure of the Fermi surface of metals at low tem-
peratures and large magnetic fields. �A summary of the first
38 years of study in this field may be found in Gold.4 More
contemporary reviews of the area may be found in
Schoenberg,5 Singleton6 and Kartsovnik,7 with the latter two
focusing on applications to quasi-two-dimensional organic
compounds.�

The question of boundary conditions and how confine-
ment affects the behavior of electrons in longitudinal mag-
netic fields �and hence the DHVA effect� has long been a
question of interest to the condensed matter community �see,
for example, Fock,8 Landau,9 Darwin,10 and also the discus-
sion in Dingle’s classic paper11 on the effects of boundary
conditions on the density of states in large systems�. This
issue is of obvious importance in the study of nanowires,
where the system of interest is confined within a narrow,
cylindrical potential, which in this case is difficult to treat
analytically owing to the difficulties in approximating the
eigenvalues of the Schrödinger equation given by the zeros
of the confluent hypergeometric function. However, in the
weak field limit, the eigenvalues are well approximated by
the zeros of the Bessel function, and so Dingle12 was able to
calculate the effect of such a confinement in a weak magnetic
field through treating the latter as a small perturbation to the
energy levels and showing that at low fields, one should
expect to observe oscillations that are primarily due to the
passage of the size quantized energy levels above the Fermi
energy. Bogachek and Gogadze13 calculated the contribution
to the thermodynamic potential of those electrons near the
surface of the wire that are on a “grazing” trajectory with
respect to the surface, and argued that this is, in fact, a more

dominant contribution to the thermodynamic potential than
the Dingle-type oscillations, as the latter are suppressed by
specular reflection under normal circumstances. The contri-
bution of these surface levels corresponds to that induced by
the Aharonov-Bohm effect. This effect was observed, along
with others ascribed to Dingle-type oscillations by Brandt
et al.,14 in a study of the magnetoresistance of bismuth wires
of micrometer thickness. Further confirmations of the pres-
ence of the low field Aharonov-Bohm effect before the onset
of Shubnikov–de Haas oscillations in the magnetoresistance
come from the study of progressively narrower Bi
nanowires,15 as well as of carbon nanotubes.16,17

It is likely that at higher fields for wires of very narrow
radius, we might expect additional effects of the interplay
between size quantization and Landau quantization to be-
come apparent. There is a need for theoretical treatments of
this region, and in what follows we make an attempt at doing
so outside of an idealized one-dimensional limit, such as that
used in Sineavsky et al.18

Alexandrov and Kabanov �AK�19 have recently examined
the DHVA oscillations present in a system of electrons con-
fined within a parabolic confining potential �the Fock-
Darwin or confinement model8,10�. They have found that
there exist three characteristic frequencies of DHVA oscilla-
tions, and also that the thermodynamic potential displays
“magic resonances” at certain values of the field where the
amplitude is greatly enhanced. In a brief note at the end of
this Introduction, we demonstrate that despite being due to a
divergent cotangent function in our expression for the oscil-

latory thermodynamic potential �̃, the behavior of the ther-
modynamic potential is still analytically well defined—this is
important if the AK result is to be properly understood.

Our paper focuses on a system of free electrons confined
within a cylindrical infinite well potential and subject to a
longitudinal magnetic field. Using a well known asymptotic
description of the wave function of such a system, we derive
a nonlinear energy spectrum and confirm it by deriving a
similar result through a semiclassical approximation. By lin-
earizing these spectra near the Fermi energy, we find that we
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acquire expressions for the energy similar to that of the
Fock-Darwin model, and so we may motivate an improve-
ment to the asymptotic and semiclassical models that brings
them closer to the energy spectrum at larger values of the
field than was previously possible. The oscillations in the
thermodynamic potential are calculated, and we find not only
that the additional characteristic frequencies of the system
are modified, but also that the position of the magic reso-
nances has altered and that they are somewhat damped. Nu-
merical plots of the thermodynamic quantities calculated are
given for various values of the field.

Finally, we examine how well the modified asymptotic
approximates the exact spectrum of the problem. We find
that it is a reasonable approximation for low values of the
magnetic quantum number m at large �c=eB /m*c; however,
it is inaccurate for large values of m, reflecting orbits that are
closer to the edge of the wire. This is likely because the
asymptotic that we are using is not valid in that limit �simi-
larly, the semiclassical approximation breaks down here
since it is too close to a turning point of the classical electron
trajectories�. However, the actual boundary conditions of the
system are most likely intermediate between those of the
infinite cylindrical well and those of the Fock-Darwin con-
finement model, and so it is perhaps reasonable to suspect
that the breakdown of the approximation, which is likely due
to the “hardness” of the boundary conditions in the infinite
well case, should not unduly restrict the application of the
nonlinear spectrum to real systems.

In what follows, we assume that the system of interest is
a long, clean metallic nanowire in a longitudinal magnetic
field B that is parallel to the direction of the wire �taken to be
the z axis of a cylindrical coordinate system�. We take the
electron mean free path, l=vF� to be comparable to or larger
than the radius of the wire R, but not the length L. We also
assume that the electron wavelength near the Fermi level is
very small in these metallic nanowires, such that L� l�R
�2�� / �m*vF�; here and previously, vF is the Fermi velocity
and m* is the band mass in the bulk metal.

Henceforth, we also take �=c=m*=L=1.

A. On the divergence of the magic resonances
in the Alexandrov-Kabamov result

The AK19 result describes the DHVA oscillations of a
three-dimensional electron exposed to a magnetic field
within a two-dimensional parabolic confining potential.8,10

This system is an isotropic planar harmonic oscillator whose
frequency in the absence of a magnetic field is taken to be
�0. Due to the effects of confinement, the DHVA oscillations
of the system aquire three characteristic frequencies of oscil-
lation: 2�, �+, and �−, where �2=�0

2+�c
2 /4 and �±

=�±�c /2. The amplitudes are given by

Ar�x,y� =
T�2x�1/2

2�r3/2 sinh��2Tr/�x��
cot��ry

2x
� , �1�

where x=� and y=�± for the the amplitudes of the oscilla-
tions with frequency 2�, and x=�± /2 and y=2� for those
with frequency �±. As has been previously noted, these am-
plitudes �Eq. �1�� contain a cotangent function which gives

rise to magic resonances for certain values of the field where
the condition 2� / ��±�= �q+2� /r is satisfied. If this is the
case, then the cotangent becomes infinite provided that q is
an integer.

However, despite what one might naively assume, this
apparent divergence is, in fact, analytically well defined. Let
us examine the following harmonics: r=1,q=1 and r=3,q
=7. From our condition for the divergence of the cotangent,
we have �= 3

2�c and, hence, �−= 2
3�. Let us set �=1, and

then set �−= 2
3 �1−	�, where 	→ +0.

For our r=1 harmonic, we shall examine the A1� �−

2 ,2��
amplitude, and for our r=3 harmonic, we shall examine the
A3�� ,�−� amplitude. We acquire

A1��−

2
,2�� = A1�1

3
�1 − 	�,2� =

T�2/3�1/2

2� sinh�3�2T�
cot� 3�

1 − 	
�

�2�

and

A3��,�−� = A3�1,
2

3
�1 − 	�� =

T�2/3�1/2

6� sinh�3�2T�
cot���1 − 	�� .

�3�

Expanding out the cotangent from Eq. �2�, we find
cot�3� / �1−	���1/ �3�	�, while doing the same for Eq. �3�
gives cot���1−	���−1��	�. Substituting these values back
into Eq. �2� and �3�, respectively, we find that

A1�1

3
�1 − 	�,2� = − A3�1,

2

3
�1 − 	��

=
T�2/3�1/2

6�2 sinh�3�2T�
1

	

�
A

	
. �4�

We may now write the following, where �̃res is the oscillia-
tory component of the AK result near the magic resonance:

�̃res = A3��,�−�sin�3
�

�
−

3���+ + �−�
2�

−
�

4
�

+ A1��−

2
,2��sin�2
�

�− −
3���+ + �−�

�− −
�

4
�

= −
A

	
sin	3
� −

3�

2
�� +

2

3
�1 − 	�� −

�

4



+
A

	
sin	 3
�

1 − 	
−

3�

2�1 − 	�
�� +

2

3
�1 − 	�� −

�

4

 .

Defining C�3
�− 3
2���++ 2

3
� and expanding out the terms

in the denominators, we arrive at

�̃res = AC cos�C −
�

4
� . �5�

Note that the singular terms are no longer present, so that the
thermodynamic potential in the region of the resonance is
now finite. However, it has also been enhanced by a factor of
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C, which is of the order of the Fermi energy 
�1, and so
remains rather large. We would expect the same analysis to
hold true for the other magic resonances.

II. CYLINDRICAL CONFINEMENT AND THE
DE HASS–VAN ALPHEN EFFECT

The Schrödinger equation in polar coordinates for an elec-
tron moving in a longitudinal magnetic field B parallel to the
z axis is

−
1

2
	1

r

�

�r
�r

��

�r
� +

�2�

�z2 +
1

r2

�2�

��2
 +
i�c

2

��

��
+

�c
2r

8
� = E� .

�6�

Following, for example �though note the difference in con-
vention regarding e�, Landau and Lifshitz,20 we seek a solu-
tion in the form

� =
1

�2�
R�r�eim�eipz, �7�

where R�r�, after redefinition in terms of = ��c /2�r2, is the
radial function,

R�� = e−/2�m�/2M	− �� −
�m�
2

−
1

2
�, �m� + 1,
 , �8�

with �=�c
−1�E− �pz

2 /2��+m /2. M�−��− �m�
2 − 1

2
� , �m � +1,� is

a confluent hypergeometric function. The zeros of this are
the eigenvalues of the Schrödinger equation for cylindrically
confined electrons. If we write �− �m�

2 − 1
2 as −a, following the

notation of Abramowitz and Stegun,21 the energy levels of
the particle are given by20

E =
k2

2
+ �c�− a +

�m� − m + 1

2
� . �9�

If the wave function is finite everywhere, then −a is an
integer, and the eigenfunctions of the equation are the La-
guerre polynomials. However, if this is not the case, and it
becomes zero at some finite radius R, then −a is a positive,
real number. In order to proceed analytically in these cases,
particularly where R is small, we must therefore use various
approximations or numerical methods so as to obtain the
energy spectrum.

A. Asymptotic approximation

For large enough values of a, where a is negative, the
confluent hypergeometric function M�a ,b ,� may be ap-
proximated by the following asymptotic form:21

M�a,b,� = ��b�e/2�1

2
b − a��1−b�/2

�−1/2 cos��2b − 4a

−
1

2
b� +

1

4
�� , �10�

where �as before� we take a=−��c
−1�E− pz

2 /2�+ m
2 − �m�

2 − 1
2

�,
b= �m � +1, and =�cR

2 /2= �� /2�s�2
�c, with R being the

radius of the nanowire and �s=�vF /2R. In so choosing the
value of , we are imposing hard boundary conditions by
stating that the wave function must be zero at R.

Our approximation has zeros when the following is true:

�2b − 4a −
1

2
b� +

1

4
� =

2n + 1

2
� , �11�

and so, after some algebra, we obtain the following approxi-
mate expression for the eigenvalues, valid wherever the
asymptotic �Eq. �10�� is valid:

E� =
�s

2



�n +

�m�
2

+
3

4
�2

−
�cm

2
. �12�

A similar energy spectrum may be derived from the Bohr-
Sommerfeld quantization conditions,

E =
�s

2



�n +

m̃ + 1

2
�2

−
�cm

2
, �13�

where m̃=�m2−1/4.
Up to a phase factor, this is very similar to Eq. �12�,

which is derived from the asymptotic form of the confluent
hypergeometric function. In what follows, we shall tend to
use the spectrum �Eq. �12�� unless otherwise stated since
there is a possibility that the Bohr-Sommerfeld conditions do
not work as well as they might, as has been noted in the case
of a nanowire in a transverse electric field �as observed in
Ref. 22, for example�.

B. Connecting the approximations with the parabolic
confinement model

We now turn to address what, if anything, Eqs. �12� and
�13� have to do with the confinement potential spectrum8,10,19

�here, we take �0 to be the frequency of the confining poten-
tial used in those sources�. For simplicity, we shall set �c
=0 �i.e., work in the limit of zero magnetic field�. Defining
=E−
 and working where E�
, we may write the follow-
ing for our nonlinear spectra �Eqs. �12� and �13��:

 =
�s

2



A2 − 
 � 2�sA − 2
 , �14�

where

A = �n +
�m�
2

+
3

4
� asymptotic

�n +
m̃ + 1

2
� semiclassical.� �15�

When �c=0 and E�
, the spectrum of the parabolic con-
finement model becomes

 = E − 
 = 2�0�n +
�m� + 1

2
� − 
 . �16�

So, in this limit, the confinement model, if we take �0
��s, and the nonlinear approximations are good matches up
to an unimportant phase and a factor of 2 in front of the 

term. Since the latter only shifts the value of the energy by a

INTERPLAY OF SIZE AND LANDAU QUANTIZATIONS IN… PHYSICAL REVIEW B 76, 155417 �2007�

155417-3



constant, it seems that the results of Ref. 19 are a good ap-
proximation of the behavior of the nonlinear approximations
�Eqs. �12� and �13��, very near the Fermi energy and at zero
field.

This motivates a replacement of �s in Eq. �14� and, hence,
in Eqs. �12� and �13�, with � so as to better approximate the
behavior of the system at larger values of �c with these non-
linear spectra. That this is not a bad approximation �at least
for small and intermediate values of m� is suggested by the
numerical analysis of Sec. IV.

Having made this replacement and restoring the momen-
tum component in the z direction, we may write the spectra
of the nonlinear model �Eqs. �12� and �13�� of electrons con-
fined in a nanowire as

E =
k2

2
+

�2



A2 −

�cm

2
. �17�

It is also instructive to compare this with the spectrum
used by Bogachek and Gogadze13 and Dingle.12 Perturbation
theory for small values of the field gives us the following
expression for the energy:

E =
�nm

2m*R2 +
k2

2m* , �18�

where in this case we restore m* for clarity, and

�nm = �nm
2 − 2�m +

1

3
�2	1 +

2�m2 − 1�
�nm

2 
 , �19�

with �nm being the nth zero of the mth order Bessel function,
and �=� /�0, where �=�R2B and �0=hc /e �in ordinary
units�. Defining a frequency �s=vF /R, our overall expression
for the energy becomes

E =
k2

2
+

�s
2

4

�nm

2 −
�c

2
+

��c

12
	1 +

2�m2 − 1�
�nm

2 
 . �20�

Discarding the last term and noting that the zeros of the
Bessel function in our region of interest �as opposed to those
of Bogacheck and Gogadze13 and Dingle12� are given by
��n+ �m�

2 + 3
4

�, we arrive at our asymptotic expression for the
energy at a weak field. It is possible to recover the Aharanov-
Bohm oscillations predicted by Bogacheck and Gogadze
from the results of our calculations in the next section by
examining the limit of small �c. However, the oscillations
they obtain have the form cos�2�r��, whereas ours have the
form cos�4r� /��. It seems probable that for the most part
this discrepancy is due to our use of a different asymptotic
approximation of the Bessel function zeros—they use an ap-
proximation valid for large m and we use one valid for large
n.

C. de Haas–van Alphen effect for the nonlinear model

We now calculate the oscillatory portion of the thermody-
namic potential for the asymptotic version of Eq. �17�—
henceforth referred to as the nonlinear model—neglecting
the phase term in the quadratic portion since it is much
smaller than n+ �m�

2 , so that we have

Enmk =
k2

2
−

m�c

2
+

�2



�n +

�m�
2
�2

. �21�

Applying twice Poisson’s formula to the expression for the
thermodynamic potential

� = − T�
�

ln�1 + e�
−E��/T� , �22�

and replacing negative m with −�m+1�, one obtains

� = �
r,r�=−�

�

��rr�
+ + �rr�

− � , �23�

where

�rr�
± = −

25/2T
5/2

��2 �
0

�

dk�
0

�

dx�
0

�

dyei�px+qy�

�ln�1 + e
�1−�x + y�2−k2±�y�/T� , �24�

with p=2�
r /�, q=4�
r� /�, and �=�c /�. We are inter-
ested in the part of � oscillating with B, which arises from
terms in Eq. �4� with nonzero r ,r�. Replacing �x+y� for z
and introducing the polar-spherical coordinates yield

�̃rr�
± = −

25/2T
5/2

��2 �
0

�

dyei�q−p�y�
0

�/2

d�

��
y/cos �

�

d��eip� cos � ln�1 + e
�1−�2±�y�/T� . �25�

Replacing y for y= ��2−�� / �±��, we obtain

�rr�
+ = −

25/2T
5/2

��2�
�

0

�

d�ei�p−q��/� ln�1 + e
�1−��/T�

��
0

�/2

d��
��

���,��

d��eip� cos �+i�q−p��2/�, �26�

where ��� ,��= ��+�2 cos2��� /4�1/2+� cos��� /2. �rr�
− is ob-

tained by replacing � for −� in this expression. Here, we
neglect a contribution from regions where the total energy �
is negative. This contribution is an artifact of approximation
�21�, and, in any case, it is exponentially small at tempera-
tures T�
 in the oscillating part of �.

Neglecting terms of the order of � /
�1, the integral
over � is approximated as

I � �
��

���,��

d��eip� cos �+i�q−p��2/�

� i�	 ��eip�� cos �+i�q−p��/�

p� cos � + 2�q − p��

−
���,��eip���,��cos �+i�q−p��2��,��/�

p� cos � + 2�q − p����,��

 . �27�

At low temperatures, T�
, the main contribution to the os-

cillating part of the thermodynamic potential �̃ comes from
energies near the Fermi surface, �1−� � �1. Moreover at
large p�1, only small angles ���1� contribute to the inte-
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gral, which allows us to extend the integration over � up to
infinity. We can also replace cos��� by 1−�2 /2, expand
��� ,�� as

���,�� � � −
�1 − ��

2�� − �/2�
−

���2

4�� − �/2�
, �28�

in the exponents �here �=�1+�2 /4+� /2�, and take cos �
=1, ��� ,��=� in the pre-exponential terms. Integrating
over � and �1−�� with the use of �0

�d� exp�ia�2�
= �� /4 �a � �1/2 exp�i�a / �4 �a � �� and �dx exp�iax��1
+exp�x��−1=−i� / sinh��a� yields

�̃rr�
+ = i

8�1/2T
5/2

�2 	 eip−i�p/4�p�

p�p�1/2 sinh��pT/2
��p� + 2�q − p��

−
�� − �/2�3/2eiq�−i�q/4�q�

q�q�1/2 sinh��qT/2
�� − �/2���p� + 2�q − p���

�29�

This approximation fails at the magic resonances, where
p�+2�q− p�=0 or p�+2�q− p��=0. In those cases, the inte-
gral �Eq. �27�� is calculated as

I � ��/4�p��1/2eip�� cos �+i�q−p��/�−i�p/4�p� �30�

or

I � ����� − �/2�/4�q��1/2eip���,��cos �+i�q−p��2��,��/�−i�q/4�q�,

�31�

respectively. Combining Eq. �28� and Eqs. �30� and �31�, we
can replace the resonant denominators in Eq. �27� as

1

p� + 2�q − p�
⇒

1

p� + 2�q − p� + i��4�p�/��1/2 exp�i�p/4�p��
�32�

and

1

p� + 2�q − p��

⇒
1

p� + 2�q − p�� − i��4�q�/��� − �/2��1/2 exp�i�q/4�q��
.

�33�

Substituting this expression into Eq. �23� and performing
partial summation yields

�̃ = �
r=1

�

�
±

Ar
± sin�2�r
/� − �/4� + Br

± cos�2�r
/� − �/4�

+ Cr
± sin�4�r
/�̃� − �/4� + Dr

± cos�4�r
/�̃� − �/4� ,

�34�

where

Ar
± =

T�2��1/2

2�r3/2 sinh��2Tr/��

�R cot��r��/� ± ��1 − i��r�/
�1/2/4� , �35�

Br
± =

T�2��1/2

2�r3/2 sinh��2Tr/��

�I cot��r��/� ± ��1 − i��r�/
�1/2/4� , �36�

Cr
± =

T��̃+ + �̃−�1/2

4�r3/2 sinh�4�2Tr/��̃+ + �̃−��

�R cot�2�r�̃±/��̃+ + �̃−�

± ��1 − i��2�r/
�1/2/2��̃+ + �̃−�3/2� , �37�

and

Dr
± =

T��̃+ + �̃−�1/2

4�r3/2 sinh�4�2Tr/��̃+ + �̃−��

�I cot�2�r�̃±/��̃+ + �̃−�

± ��1 − i��2�r/
�1/2/2��̃+ + �̃−�3/2� . �38�

Here, �±=�±�c /2, �̃±=���1+�2 /4±� /2�, and the sum-
mation formula, �r�z−r�−1=� cot��z� has been applied. The
± of Ar

± cancel with each other, as do those of Br
±. This allows

us to simplify our formula and write

�̃ = �
r=1

�

�
±

Cr
± sin�4�r
/�̃� − �/4�

+ Dr
± cos�4�r
/�̃� − �/4� . �39�

We can see that, unlike the AK result, we have two char-
acteristic fequencies �̃± /2 which differ from the equivelent
frequencies in that result. In addition, the magic resonances
occur at different ratios of �c /�s and are damped by the
additional terms in the cotangent function. As is usual in
these calculations, we may restore the effects of spin-
splitting by multiplying each term by cos�r�g
B /e�. It
should be noted that the effects of spin orbital coupling and
other complications may further complicate this expression
in real materials.

III. NUMERICAL RESULTS

Here, we present some numerical calculations of the
DHVA oscillations and of their Fourier transforms so that the
AK and nonlinear results might be compared. We have set

=2000�s and �s=1, measuring �c and all other quantities
in units of �s. Fourier transfromations were performed using
the NAG DFT routine C06FAF and the Fourier integral calcu-
lation techniques described in Ref. 23.

Calculations at T=0 for the parabolic confinement model
were performed through taking the limit T→0 in Eq. �22�
and then integrating over k. We thus obtained the following
expression for the thermodynamic potential,

� = −
4�2

3�
�
n,m

R�
 − Enm�3/2, �40�

where Enm is energy for a given n ,m. The nonoscillatory
portion was then subtracted out, leaving only the oscillatory
portion of the function behind.
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This could not be done in the case of the nonlinear model,
however, due to the issue remarked on in Sec. II C regarding
the unphysical negative energy levels. It appears that as yet
there is no straightforward way of calculating the thermody-
namic quantities in this fashion, as it does not appear as easy
to remove the contributions from negative energy values in
this method as it was in the aforementioned analytic �Poisson
summation� treatment of Sec. II C. For T�0, the calcula-
tions were done using the formulas of Ref. 19 for the AK
results, and Eqs. �39� and �38� in this paper were used for the
nonlinear results.

Figure 1 displays the behavior of the thermodynamic po-
tential with respect to changes in ��c�−1, alongside their Fou-
rier transforms. These last clearly show the three peaks cor-
responding to each of the characteristic frequencies given in
Ref. 19 �here, F0 is equivalent to F of that reference�. In the
case of the T=0 plots, it seems that some residual nonoscil-
latory components of the untransformed functions remain at
low frequencies, and these obscure the low frequency con-
tent of the Fourier transform.

In Fig. 2, we present the first magic resonance in the
thermodynamic potential of the nonlinear model together
with that of the parabolic confinement model for the pur-
poses of comparison. We can see that the resonance in the
nonlinear case has not only changed position, but has also

been damped by the additional terms in the cotangent func-
tions of the Fourier coefficients.

Figure 3 shows the thermodynamic potential and its Fou-
rier transform in the same ranges as previously used for the

FIG. 1. �Color online� Graphs of �̃ in the parabolic confinement model above their Fourier transforms. Note that the remnant of the
nonperiodic component of the T=0 data is most noticeable in the top left graph, but also that the F+ resonance is most obviously visible in
its Fourier transform.

FIG. 2. �Color online� Graph comparing the first magic reso-
nances of the parabolic confinement model with the nonlinear
model. The temperature here is set at T=0.025.
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parabolic confinement model calculations. Following Ref.
19, we may estimate the characteristic frequencies as being

F± =
2F��2 ± �1 + ���

�1 + ����1 + �� ± �1/�2��2
, �41�

where F=SF / �2�e�, �=4�s
2 /�c

2=4�2SF / �e2SB2�, ��=� /2,
S=�R2 is the cross-sectional area of the wire, and SF
=��m*�2vF

2 is the cross-sectional area of the Fermi surface.
�We remind the reader that in order to interpret the frequen-
cies given in the figures using these formulas, we should take
e=m*=�s=1.�

We can see the two characteristic frequencies clearly in
the Fourier transform, and that the oscillatory behavior of the
function is considerably different from that seen in the para-
bolic confinement case.

IV. HOW GOOD ARE THE APPROXIMATIONS?

In order to understand how our nonlinear model differs
from the exact behavior of the system, we must compare
their spectra with that generated from the exact zeros of the
confluent hypergeometric function M�a ,b ,�. In order to ob-

tain the latter, we numerically generated M�a ,b ,� with the
CONHYP function24,25 and located the roots of the function as
the parameter −a was increased from zero using the van
Wijngaarden-Dekker-Brent algorithm.26

Unfortunately, the processing ability of the computer lim-
its the values of the variable  for which results can be ob-
tained; this means that it is difficult to obtain zeros for large
values of both 
 /�s and �c /�s since this entails a large
value of  that will cause the series defining M�a ,b ,� to be
very slowly converging. However, one can gain an idea of
the behavior of the exact system for less extreme values of
the variable, and it is to such an example that we now turn.

We set 
=100�s, �s=1, and examine values of 0
��c /�s�1. For each of these, we determine the largest
value of n in the nonlinear approximation for which E�

�assuming k is zero� and calculate the relative error
�= �E−Eexact� /E, where Eexact is the exact energy calculated
from the nth zero of M�a ,b ,�. This enables us to gain some
idea of the size of the error at the Fermi surface described by
the nonlinear model.

To obtain the exact energy in the zero-field limit, we note
that the wave function in that case takes the form of a Bessel
function, and so the exact zeros may be obtained from the
function J�m��2�Eexactw�, where w= � �

2�s
�2
.

FIG. 3. �Color online� Graphs of �̃ in the nonlinear model above their Fourier transforms. Note that the F+ and F− peaks in the lower
left Fourier transform are so close as to be indistiguishable; the second harmonic is larger than expected here due to its enhancement by the
cotangent portion of its amplitude.
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We plot � in Fig. 4. It is apparent that as �c increases, the
shape of the approximate Fermi surface alters such that the
maximum possible positive value of m increases and the
maximum negative value of m decreases. This coincides with
a decrease in the maximum value of ��� for negative m and
an increase for positive m. In fact, the latter error is so large
for large m at �c=1 that it can scarcely be said that it accu-
rately models the exact values at all in that region. In addi-
tion, it is worth noting that the nonlinear model underesti-
mates the deformation of the Fermi surface when �c is large
�for example, see Fig. 5�. Why is this?

In the case of the asymptotic derivation of the model, the
asymptotic from which we obtained it makes two assump-
tions: that −a is greater than , so that M�a ,b ,� resembles a
Bessel function, and that −a is greater than b, so that the
Bessel function resembles a cosine function. Obviously, this
condition is violated in the zero-field limit at large m, and so
we would expect it to be violated for large m at finite values
of the field, even though it appears that the replacement of �s
with � in Sec. II B counteracts the violation of the first con-
dition for large  if b is small. This is what occurs in the case
of positive m. As for the the portions of the spectrum with
negative m, since these have larger energies than their posi-
tive counterparts and since this disparity increases as we in-
crease �c, one should not be surprised to find that as �c

increases, the Fermi energy is exceeded at smaller and
smaller values of negative m, which are in turn more closely
matched by the asymptotic. So, in this case, the maximum
error decreases.

Semiclassically, one should note that large values of m
describe electron orbits that approach the edge of the wire
quite closely. Since that is a turning point due to the impo-
sition of the hard boundary conditions, we cannot expect the
semiclassical approximation to hold in that region. The
analysis of the difference between the behavior at positive
and negative m given above also holds here.

Perhaps we should consider the boundary conditions of
our problem. The parabolic confinement model was origi-
nally derived with “soft” boundary conditions—a parabolic
confining potential—and as we have shown, this approxi-
mates the nonlinear model, derived with hard boundary con-
ditions near the Fermi surface. However, this latter model
does not capture the large m behavior of the system very
well, in part, one suspects, because of the hardness of the
boundary conditions. It should be noted then that neither of
these extremes is likely to be physical—the boundary condi-
tions for a real nanowire will most probably be intermediate
between them, and so it is possible that the experimental
behavior of the system might also be intermediate between
the behaviors we have discussed. This, of course, is a matter
that requires empirical determination.

V. CONCLUSIONS

We have calculated the oscillations in the thermodynamic
potential due to the de Haas–van Alphen effect in a clean
metallic nanowire with a simple Fermi surface for a nonlin-
ear energy spectrum derived from an asymptotic approxima-
tion to the exact solution of the Schrödinger equation, and
have compared them with the AK results derived using the
parabolic confinement model which approximates it near the
Fermi energy. In both models, one can observe magic reso-
nances where the amplitude of the oscillations in the thermo-
dynamic potential is enhanced at particular ratios of �s to �c,
although their locations differ in each model and are some-
what damped in the nonlinear case. However, the nonlinear
result lacks one of the frequencies of oscillation observed in
the AK result. In addition, it seems that the infinite well
boundary conditions cause some problems at large values of
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FIG. 4. �Color online� The relative error �

along the Fermi surface defined by the nonlinear
model, as a function of m and �c.
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FIG. 5. �Color online� Graph showing the quantum number n
against m at the Fermi surface for 
=100�s and �c /�s=1.0.
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m due to the semiclassical nature of our approximations;
however, this is unlikely to be fatal to our predictions of
magic resonances since the real system likely has boundary
conditions intermediate between the two cases which we
have considered.

It seems clear that the interplay between the size quanti-
zation and the magnetic quantization is nontrivial in the ex-
treme and exhibits a certain degree of model dependence.
Further experimental and theoretical work is needed both to

clarify remaining ambiguities and to apply this general
theory to the more complex band structures of realistic nano-
wires.
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