648 research outputs found

    Number-of-particle fluctuations in systems with Bose-Einstein condensate

    Full text link
    Fluctuations of the number of particles for the dilute interacting gas with Bose-Einstein condensate are considered. It is shown that in the Bogolubov theory these fluctuations are normal. The fluctuations of condensed as well as noncondensed particles are also normal both in canonical and grand canonical ensembles.Comment: Latex file, 12 page

    Linear Continuum Mechanics for Quantum Many-Body Systems

    Get PDF
    We develop the continuum mechanics of quantum many-body systems in the linear response regime. The basic variable of the theory is the displacement field, for which we derive a closed equation of motion under the assumption that the time-dependent wave function in a locally co-moving reference frame can be described as a geometric deformation of the ground-state wave function. We show that this equation of motion is exact for systems consisting of a single particle, and for all systems at sufficiently high frequency, and that it leads to an excitation spectrum that has the correct integrated strength. The theory is illustrated by simple model applications to one- and two-electron systems.Comment: 4 pages, 1 figure, 1 tabl

    Covariant description of kinetic freeze out through a finite time-like layer

    Full text link
    The Freeze Out (FO) problem is addressed for a covariant FO probability and a finite FO layer with a time-like normal vector continuing the line of studies introduced in Ref. [1]. The resulting post FO momentum distribution functions are presented and discussed. We show that in general the post FO distributions are non-thermal and asymmetric distributions even for time-like FO situations.Comment: 10 pages, 12 figures, major rewrite with changed content, corrected typos and new references adde

    Modified semiclassical approximation for trapped Bose gases

    Full text link
    A generalization of the semiclassical approximation is suggested allowing for an essential extension of its region of applicability. In particular, it becomes possible to describe Bose-Einstein condensation of a trapped gas in low-dimensional traps and in traps of low confining dimensions, for which the standard semiclassical approximation is not applicable. The results of the modified approach are shown to coincide with purely quantum-mechanical calculations for harmonic traps, including the one-dimensional harmonic trap. The advantage of the semiclassical approximation is in its simplicity and generality. Power-law potentials of arbitrary powers are considered. Effective thermodynamic limit is defined for any confining dimension. The behaviour of the specific heat, isothermal compressibility, and density fluctuations is analyzed, with an emphasis on low confining dimensions, where the usual semiclassical method fails. The peculiarities of the thermodynamic characteristics in the effective thermodynamic limit are discussed.Comment: Revtex file, 13 page

    The Effect of Steroid Treatment on Lipocortin Immunoreactivity of Rat Brain

    Get PDF
    Lipocortin-1, lipocortin-2 and lipocortin-5 were immunohistochemically assessed in rats. Apart from animals receiving no treatment, other animals received pretreatment with methylprednisolone, or the 21-aminosteroid U-74389F. Whereas Hpocortin immunoreactivity was absent in the greater part of the brain in animals not pretreated with steroid (except in sporadic microglial cells and choroid plexus), there was obvious immunostaining of parenchymatous elements in steroid pretreated animals. In the steroid pretreated animals lipocortin immunoreactivity of the brain tissue may indicate local formation of lipocortin under the influence of steroids that had entered the tissue. The cellular elements which showed immunostaining included meningeal cells, neurones, ependyma, oligodendroglia and capillary endotheHum

    Molecular formations in ultracold mixtures of interacting and noninteracting atomic gases

    Full text link
    Atom-molecule equilibrium for molecular formation processes is discussed for boson-fermion, fermion-fermion, and boson-boson mixtures of ultracold atomic gases in the framework of quasichemical equilibrium theory. After presentation of the general formulation, zero-temperature phase diagrams of the atom-molecule equilibrium states are calculated analytically; molecular, mixed, and dissociated phases are shown to appear for the change of the binding energy of the molecules. The temperature dependences of the atom or molecule densities are calculated numerically, and finite-temperature phase structures are obtained of the atom-molecule equilibrium in the mixtures. The transition temperatures of the atom or molecule Bose-Einstein condensations are also evaluated from these results. Quantum-statistical deviations of the law of mass action in atom-molecule equilibrium, which should be satisfied in mixtures of classical Maxwell-Boltzmann gases, are calculated, and the difference in the different types of quantum-statistical effects is clarified. Mean-field calculations with interparticle interactions (atom-atom, atom-molecule, and molecule-molecule) are formulated, where interaction effects are found to give the linear density-dependent term in the effective molecular binding energies. This method is applied to calculations of zero-temperature phase diagrams, where new phases with coexisting local-equilibrium states are shown to appear in the case of strongly repulsive interactions.Comment: 35 pages, 14 figure
    • …
    corecore