
Linear ContinuumMechanics for Quantum Many-Body Systems

Jianmin Tao,1 Xianlong Gao,2,* G. Vignale,2 and I. V. Tokatly3,4

1Theoretical Division and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Department of Physics, University of Missouri-Columbia, Columbia, Missouri 65211, USA

3IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
4ETSF Scientific Development Centre, Departamento de Fı́sica de Materiales, Universidad del Paı́s Vasco UPV/EHU,

Centro Fı́sica de Materiales CSIC-UPV/EHU, 20018 San Sebastián, Spain
(Received 30 April 2009; published 18 August 2009)

We develop the continuum mechanics of quantum many-body systems in the linear response regime.

The basic variable of the theory is the displacement field, for which we derive a closed equation of motion

under the assumption that the time-dependent wave function in a locally comoving reference frame can be

described as a geometric deformation of the ground-state wave function. We show that this equation of

motion is exact for systems consisting of a single particle, and for all systems at sufficiently high

frequency, and that it leads to an excitation spectrum that has the correct integrated strength. The theory is

illustrated by simple model applications to one- and two-electron systems.
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The dynamics of quantum many-particle systems, as
displayed in electromagnetic transitions, quasiparticle re-
laxation, chemical reactions, ionization, and collision pro-
cesses, poses a major challenge to computational physi-
cists and chemists. Whereas the calculation of ground-state
properties can be tackled by powerful computational meth-
ods such as the quantum Monte Carlo method [1], the
development of similar methods for time-dependent prop-
erties has been slow. One of the most successful methods to
date is the time-dependent density functional theory
(TDDFT), or its more recent version—time-dependent
current density functional theory (TDCDFT) [2]. In the
common Kohn-Sham (KS) implementation of this method
[3,4] the formidable problem of solving the time-
dependent Schrödinger equation for the many-body wave
function is replaced by the much simpler problem of
determining N single-particle orbitals. However, even
this simplified problem is quite complex, and furthermore
there are features such as multiparticle excitations [5] and
dispersion forces [6] that are very difficult to treat within
the conventional approximation schemes.

An alternative approach, which actually dates back to
the early days of quantum mechanics [7–9], attempts to
calculate directly the collective variables of interest—den-
sity and current. We call this approach ‘‘quantum contin-
uum mechanics’’ (QCM) because, in analogy with
classical theories of continuous media, it attempts to de-
scribe the quantum many-body system without explicit
reference to the individual particles [10].

The possibility of a QCM formulation of the quantum
many-body problem is guaranteed by the very same theo-
rems that lay the foundation of TDDFT and TDCDFT
[11,12]. Let us consider a system of particles described
by the time-dependent Hamiltonian

ĤðtÞ ¼ Ĥ0 þ
Z

drn̂ðrÞV1ðr; tÞ; (1)

where Ĥ0 ¼ T̂ þ Ŵ þ V̂0 is the sum of kinetic energy (T̂),

interaction potential energy (Ŵ), and the potential energy

associated with an external static potential (V̂0). n̂ðrÞ is the
particle density operator and V1ðr; tÞ is an external time-
dependent potential. The exact Heisenberg equation of
motion for the current density operator, averaged over
the quantum state, leads to the Euler equation

m@tj�ðr; tÞ ¼ �nðr; tÞ@�½V0ðrÞ þ V1ðr; tÞ� � @�P��ðr; tÞ:
(2)

Herem is the mass of the particles and repeated indices are
summed over. The key quantity on the right-hand side of
Eq. (2) is the stress tensor P��ðr; tÞ—a symmetric tensor

whose divergence yields the force density arising from
quantum-kinetic and interaction effects. Now the Runge-
Gross theorem of TDDFT guarantees that the stress tensor,
like every observable of the system, is a functional of the
current density and of the initial quantum state. Thus,
Eq. (2) is in principle a closed equation of motion for
j—the only missing piece being the explicit expression
for P�� in terms of the current density.

In recent years much effort has been devoted to con-
structing an approximate QCM [13–18], and several appli-
cations have appeared in the literature (see Ref. [19] for
some representative examples). All approximation
schemes so far have been based on the local density
approximation and generalizations thereof. In this Letter
we derive a new approximate expression for P��ðr; tÞ as a
functional of the current density for systems that perform
small amplitude oscillations about the ground state. The
new formula is nonlocal, is expressed in terms of ground-
state properties that can be calculated without recourse to
DFT, and becomes exact in the high-frequency limit.
The Euler equation (2) is conveniently expressed in

terms of the displacement field uðr; tÞ, which in the linear
regime is defined by jðr; tÞ ¼ n0ðrÞ@tuðr; tÞ, where n0ðrÞ is
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the ground-state density. It is also convenient to write the
density and the stress tensor as the sum of a large ground-
state component and a small time-dependent part, i.e.,
nðr; tÞ ¼ n0ðrÞ þ n1ðr; tÞ and P��ðr; tÞ ¼ P��;0ðrÞ þ
P��;1ðr; tÞ. Then the linearized form of the Euler equation

(2) takes the form

mn0ðrÞ@2tu ¼ �n0ðrÞrV1ðr; tÞ þF1ðr; tÞ; (3)

where the total force density,

F�;1ðr; tÞ � �n1ðr; tÞ@�V0ðrÞ � @�P��;1ðr; tÞ; (4)

is a linear functional of uðr; tÞ. Our approximate expres-
sion for F�;1 will be presented in terms of the functional

E½u� � hc 0½u�jĤ0jc 0½u�i; (5)

which is the energy of the deformed ground state jc 0½u�i,
obtained from the undistorted ground state jc 0i by dis-
placing the volume element located at r to a new position
rþ uðr; tÞ. More precisely, we will argue that the force
density can be represented as

F�;1ðr; tÞ ¼ �
Z

dr0
�2E½u�

�u�ðrÞ�u�ðr0Þ
��������u¼0

u�ðr0; tÞ; (6)

where the second variational derivative of E½u�, evaluated
at the ground state (u ¼ 0) has an exact expression in terms
of the one- and two-particle density matrices of the ground
state. We will show that the representation (6) is exact for
all one-particle systems and also for many-particle systems
at sufficiently high frequency.

Equation (6) can be derived by performing a transfor-
mation to the ‘‘comoving reference frame’’[17,18]—a non-
inertial frame in which the density is constant and equal to
the ground-state density and the current density is zero—
and assuming that the wave function in this frame is inde-
pendent of time. This assumption is correct in one-particle
systems, where the constancy of the density and the van-
ishing of the current density completely determine the
wave function. It is also generally valid on very short time
scales, or for frequencies higher than the characteristic en-
ergy of single-particle excitations, because on these time
scales it is not possible for the particles to ‘‘forget’’ the
correlations built into the initial ground-state wave func-
tion. In all other cases our approximation replaces the exact
‘‘normal modes’’ of the system by a smaller set of approxi-
mate normal modes, in such a way that the total spectral
weight is conserved. Rather than delving into the sophis-
ticated mathematics of the transformation to the comoving
reference frame, in this Letter we present a more elemen-
tary and direct derivation of Eq. (6), which clearly dem-
onstrates the satisfaction of the spectral sum rules.

We start from the linear response of the current density
to an external vector potential of frequency !

j�ðr; !Þ ¼
Z

dr0���ðr; r0; !ÞA�;1ðr0; !Þ; (7)

where j�ðr; !Þ is the Fourier component of the current at

frequency ! and ���ðr; r0; !Þ is the current-current re-

sponse function. At high frequency, ��� has the well-

known expansion [20]

���ðr; r0; !Þ ¼ n0ðrÞ
m

�ðr� r0Þ��� þ
M��ðr; r0Þ
m2!2

; (8)

where the first term (diamagnetic) is frequency-
independent and

M��ðr; r0Þ � �m2h�0j½½Ĥ0; ĵ�ðrÞ�; ĵ�ðr0Þ�j�0i (9)

is the first spectral moment of the current-current response
function. Now, substituting Eq. (8) in Eq. (7) and noting
that jðr; !Þ ¼ �i!n0ðrÞuðr; !Þ and that the vector poten-
tial is related to the scalar potential by the equation

A1ðr; !Þ ¼ rV1ðr;!Þ
i! , we obtain (to leading order in 1=!2)

�m!2n0u� ¼ �n0@�V1 �
Z

dr0M��ðr; r0Þu�ðr0; !Þ:
(10)

This is equivalent to our equation of motion (3), with F �;1

given by Eq. (6), if and only if

M��ðr; r0Þ ¼ �2E½u�
�u�ðrÞ�u�ðr0Þ

��������u¼0
: (11)

To show that this is the case, we observe that the deformed
ground state is related to the undeformed ground state by
the unitary transformation

j�0½u�i ¼ e�i
R

drĵðrÞ�uðrÞj�0i: (12)

Here we have used the fact that the current density operator

ĵðrÞ is the generator of a translation of all the particles in an
infinitesimal volume located at r. Thus, the transformation
(12) amounts to performing different translations by vec-
tors uðrÞ at different points in space, i.e., precisely to
deforming the system according to the displacement field
uðrÞ. Substituting the above expression for j�0½u�i in the
definition of E½u� and expanding to second order in u, we
can easily verify that

E½u� ’ E0 þ 1

2

Z
dr

Z
dr0u�ðrÞM��ðr; r0Þu�ðr0Þ; (13)

which establishes the validity of Eq. (11) [21].
A lengthy calculation allows us to calculate the three

components of the force density functional arising from the
kinetic, interaction, and external potential parts of the

Hamiltonian: F�;1 ¼ F kin
�;1 þF int

�;1 þF pot
�;1, where

F kin
�;1¼@�½2T��;0u��þT��;0@�u��� 1

4m
@�@�ðn0@�r �uÞ

þ 1

4m
@�f2ðr2n0Þu��þð@�n0Þ@�r �u

þð@�n0Þ@�r �u�2@�½ð@�n0Þu���g; (14)

[u�� ¼ ð@�u� þ @�u�Þ=2],

F int
�;1 ¼

Z
dr0K��ðr; r0Þ½u�ðrÞ � u�ðr0Þ�; (15)
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F pot
�;1 ¼ �n0ðrÞu � r@�V0: (16)

Here we have introduced the equilibrium stress tensor

T��;0 ¼ 1

2m
ð@�@0� þ @�@

0
�Þ�ð1Þðr; r0Þjr¼r0 � 1

4m
r2n0���;

(17)

where �ð1Þðr; r0Þ is the one-particle density matrix. The
interaction kernel K in Eq. (15) is given by

K��ðr; r0Þ ¼ �2ðr; r0Þ@�@0�wðjr� r0jÞ; (18)

where wðjr� r0jÞ is the interaction potential and

�2ðr; r0Þ � �ð2Þðr; r0jr; r0Þ, where �ð2Þ is the two-particle
density matrix.

The excitation energies of the system are obtained from
the solution of Eq. (10) after setting V1 ¼ 0. This equa-
tion defines a Hermitian eigenvalue problem with positive
eigenvalues!2

n—the square of the excitation energies. The
positivity follows from the fact that a deformation of
the ground-state wave function must necessarily increase
the energy. The corresponding eigenfunctions unðrÞ are
mutually orthogonal with respect to the scalar product
ðun;umÞ �

R
drunðrÞumðrÞn0ðrÞ ¼ 0 if n � m. These ei-

genfunctions must be regarded as approximations to the
matrix elements of the current density operator between
the ground state and the excited state in question, i.e.,

unðrÞ ’ ½j�n0ðrÞ
!nn0ðrÞ , where ½j�n0ðrÞ � h�njĵðrÞj�0i. It is easy

to verify that the sum rule
P

n!n½j��n0ðrÞ½j��0n �
ðr0Þ ¼ m�2M��ðr; r0Þ is satisfied by the approximate

½j�n0ðrÞ. In this sense our approximation preserves the total
strength of the spectrum. It is only for one-particle systems
that the ‘‘approximate’’ ½j�n0ðrÞ becomes exact. Let us now
illustrate the theory with two simple examples.

Linear harmonic oscillator.—For a harmonic oscillator
of frequency !0, the eigenvalue problem takes the form

1

4
u0000 �xu000 þðx2�2Þu00 þ3xu0 �!2�!2

0

!2
0

u¼0; (19)

where the prime denotes differentiation with respect to x.
Solving Eq. (19) with the boundary condition

n1=20 ðxÞuðxÞ ! 0 for jxj ! 1, we obtain the exact excita-

tion spectrum !n ¼ �n!0 (n ¼ 1; 2; . . . ) and the corre-
sponding eigenfunctions unðxÞ / Hn�1ðxÞ, which are
proportional to the matrix elements of the current density
operator.

Two-electron system.—Consider a system of two elec-

trons repelling each other with interaction potential e2

jx1�x2j
in a one-dimensional parabolic trap of frequency !0.
Because of the separation of center of mass and relative
variables this model can easily be solved numerically, and
even analytically in the limit of strong correlation. We only
focus on the strongly correlated limit (!0 ! 0) and the
singlet states. In this limit the two electrons become local-

ized near x ¼ �x0=2, where x0 ¼ ð2e2=m!2
0Þ1=3 is large

compared to l ¼ ðm!0Þ�1=2 (see Fig. 1). The wave func-

tion for the relative coordinate xr ¼ x1 � x2 is symmetric
and consists of two identical ‘‘blobs’’ centered at �x0,
each blob being the wave function of a harmonic oscillator
of frequency !0

ffiffiffi
3

p
. The center of mass wave function is

that of a harmonic oscillator with frequency !0. The exact
eigenstates are characterized by two non-negative integers
n (center of mass) and m (relative motion) and are denoted
by ðn;mÞ. ð0; 0Þ is the ground state. The excitation energy
associated with the state ðn;mÞ is Enm ¼ ðnþm

ffiffiffi
3

p Þ!0.
From the wave functions we calculate, without approxi-
mations, the displacement field unmðxÞ. Some of the results
are shown in Fig. 1. The displacement field of the ð1; 0Þ
excitation, which corresponds to a rigid translation of the
center of mass, is uniform in space, while the displacement
field of the ð0; 1Þ excitation, which corresponds to the
classical breathing mode, changes sign around the origin.
The ð1; 0Þ and ð0; 1Þ modes exhaust the classical phonon
modes of a system of two localized particles. The remain-
ing excitations are fully quantum mechanical. Examining
Fig. 1 one quickly realizes that all the excitations with a
given value of nþm and the same parity ofm produce the
same displacement field, but have different energies.
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FIG. 1 (color online). Unnormalized displacement fields for a
few low-lying excitations of the two-electron system described
in the text. The solid line is the ground-state density. Analytically
we find unmðxÞ / Hnþm�1½2ðx� x0=2Þ� for x ’ x0=2, with parity
ð�1Þn�1 independent of m. The large value of the displacement
field for x� 0 does not have a physical significance since the
density is exponentially small in that region.
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Let us now see what our elastic equation of motion
predicts for this system. In Table I we present the energies
of a few low-lying excitations obtained from the numerical
solution of Eq. (10) in the strongly correlated regime. We
see that the energies of excitations such as ð1; 0Þ, ð0; 1Þ, and
ð1; 1Þ, which do not ‘‘share’’ their displacement field with
other excitations, are very well reproduced by our calcu-
lation within the accuracy of the numerical work. On the
other hand, groups of excitations that share the same
displacement field are replaced by a single excitation of
average frequency, in such a way that the total spectral
strength of the group is preserved. It can be proved that the
excitation frequency �! that replaces the frequencies !l of
the excitations in a given group is given by the sum rule

�!2 ¼ P
lfl!

2
l , where fl ¼

2mj
R

drj0lðrÞ� �uðrÞj2
!l

is the ‘‘oscilla-

tor strength’’ of the lth excitation, �uðrÞ is the normalized
solution of the eigenvalue problemwith eigenvalue �!2, and
the sum runs over all the excitations in the group. In the last
column of Table I, we have checked that the sum rule is
quite well satisfied by our numerical solution.

The QCM formulation is applicable directly to the
Kohn-Sham system, in which case we only need the
ground-state KS orbitals and a reasonable approximation
for the exchange-correlation field. While the KS method
treats the noninteracting kinetic stress tensor exactly, our
method should be computationally more agile, since it does
not involve time-dependent orbitals and/or the inversion of
large linear response matrices. Our theory extends the well-
known collective approximation of the homogeneous elec-
tron gas to inhomogeneous systems and should therefore
be useful in dealing with collective effects such as multi-
particle excitations and the dipolar fluctuations that are
responsible for van der Waals attraction [22,23].
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TABLE I. Comparison between exact and calculated (appr)
excitation energies in the strongly correlated regime. The aver-
age frequency �! of a group of excitations is calculated numeri-
cally from the sum rule discussed in the text. Analytically one
finds �!2=!2

0 ¼ 2þ 3
ffiffiffi
3

p
kþ 6kðk� 1Þð2� ffiffiffi

3
p Þ � ð�1Þm �

ð2� ffiffiffi
3

p Þk, where k � nþm� 1: these exact values are indis-
tinguishable, up to the third decimal digit, from the numerical
results listed in the last column.

ðn;mÞ !exact
nm =!0 !appr

nm =!0 �!=!0

ð1; 0Þ 1.0 1.00 1.00

ð0; 1Þ 1.732 1.740 1.732

ð2; 0Þ 2.0 2.643 2.632

ð0; 2Þ 3.464

ð1; 1Þ 2.732 2.736 2.732

ð3; 0Þ 3.0 3.950 3.942

ð1; 2Þ 4.464

ð2; 1Þ 3.732 3.965 3.960

ð0; 3Þ 5.196

ð4; 0Þ 4.0 5.224 5.217

ð2; 2Þ 5.464

ð0; 4Þ 6.928
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