8 research outputs found

    Intercomparisons of Nine Sky Brightness Detectors

    Get PDF
    Nine Sky Quality Meters (SQMs) have been intercompared during a night time measurement campaign held in the Netherlands in April 2011. Since then the nine SQMs have been distributed across the Netherlands and form the Dutch network for monitoring night sky brightness. The goal of the intercomparison was to infer mutual calibration factors and obtain insight into the variability of the SQMs under different meteorological situations. An ensemble average is built from the individual measurements and used as a reference to infer the mutual calibration factors. Data required additional synchronization prior to the calibration determination, because the effect of moving clouds combined with small misalignments emerges as time jitter in the measurements. Initial scatter of the individual instruments lies between ±14%. Individual night time sums range from −16% to +20%. Intercalibration reduces this to 0.5%, and −7% to +9%, respectively. During the campaign the smallest luminance measured was 0.657 ± 0.003 mcd/m2 on 12 April, and the largest value was 5.94 ± 0.03 mcd/m2 on 2 April. During both occurrences interfering circumstances like snow cover or moonlight were absent

    Worldwide variations in artificial skyglow

    Get PDF
    Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope, and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program

    Field comparison of two novel open-path instruments that measure dry deposition and emission of ammonia using flux-gradient and eddy covariance methods

    No full text
    Dry deposition of ammonia (NH3) is the largest contributor to the nitrogen deposition from the atmosphere to soil and vegetation in the Netherlands, causing eutrophication and loss of biodiversity; however, data sets of NH3 fluxes are sparse and in general have monthly resolution at best. An important reason for this is that measurement of the NH3 flux under dry conditions is notoriously difficult. There is no technique that can be considered as the gold standard for these measurements, which complicates the testing of new techniques. Here, we present the results of an intercomparison of two novel measurement set-ups aimed at measuring dry deposition of NH3 at half hourly resolution. Over a 5-week period, we operated two novel optical open-path techniques side by side at the Ruisdael station in Cabauw, the Netherlands: the RIVM-miniDOAS 2.2D using the aerodynamic gradient technique, and the commercial Healthy Photon HT8700E using the eddy covariance technique. These instruments are widely different in their measurement principle and approach to derive deposition values from measured concentrations; however, both techniques showed very similar results (r 0.87) and small differences in cumulative fluxes (∼10 %) as long as the upwind terrain was homogeneous and free of nearby obstacles. The observed fluxes varied from ∼-80 to ∼+140 ng NH3 m-2 s-1. Both the absolute flux values and the temporal patterns were highly similar, which substantiates that both instruments were able to measure NH3 fluxes at high temporal resolution. However, for wind directions with obstacles nearby, the correlations between the two techniques were weaker. The uptime of the miniDOAS system reached 100 % once operational, but regular intercalibration of the system was applied in this campaign (35 % of the 7-week uptime). Conversely, the HT8700E did not measure during and shortly after rain, and the coating of its mirrors tended to degrade (21 % data loss during the 5-week uptime). In addition, the NH3 concentrations measured by the HT8700E proved sensitive to air temperature, causing substantial differences (range: -15 to +6 μg m-3) between the two systems. To conclude, the miniDOAS system appears ready for long-term hands-off monitoring. The current HT8700E system, on the other hand, had a limited stand-alone operational time under the prevailing weather conditions. However, under relatively dry and low-dust conditions, the system can provide sound results, opening good prospects for future versions, also for monitoring applications. The new high temporal resolution data from these instruments can facilitate the study of processes behind NH3 dry deposition, allowing an improved understanding of these processes and better parameterisation in chemical transport models

    Intercomparison of in situ measurements of ambient NH3 : instrument performance and application under field conditions

    Get PDF
    Ammonia (NH3) in the atmosphere affects both the environment and human health. It is therefore increasingly recognised by policy makers as an important air pollutant that needs to be mitigated, though it still remains unregulated in many countries. In order to understand the effectiveness of abatement strategies, routine NH3 monitoring is required. Current reference protocols, first developed in the 1990s, use daily samplers with offline analysis; however, there have been a number of technologies developed since, which may be applicable for high time resolution routine monitoring of NH3 at ambient concentrations. The following study is a comprehensive field intercomparison held over an intensively managed grassland in southeastern Scotland using currently available methods that are reported to be suitable for routine monitoring of ambient NH3. In total, 13 instruments took part in the field study, including commercially available technologies, research prototype instruments, and legacy instruments. Assessments of the instruments' precision at low concentrations ( 0.75). At concentrations below 10 ppb, however, precision decreased, and instruments fell into two distinct groups, with duplicate instruments split across the two groups. It was found that duplicate instruments performed differently as a result of differences in instrument setup, inlet design, and operation of the instrument. New metrological standards were used to evaluate the accuracy in determining absolute concentrations in the field. A calibration-free CRDS optical gas standard (OGS, PTB, DE) served as an instrumental reference standard, and instrument operation was assessed against metrological calibration gases from (i) a permeation system (ReGaS1, METAS, CH) and (ii) primary standard gas mixtures (PSMs) prepared by gravimetry (NPL, UK). This study suggests that, although the OGS gives good performance with respect to sensitivity and linearity against the reference gas standards, this in itself is not enough for the OGS to be a field reference standard, because in field applications, a closed path spectrometer has limitations due to losses to surfaces in sampling NH3, which are not currently taken into account by the OGS. Overall, the instruments compared with the metrological standards performed well, but not every instrument could be compared to the reference gas standards due to incompatible inlet designs and limitations in the gas flow rates of the standards. This work provides evidence that, although NH3 instrumentation have greatly progressed in measurement precision, there is still further work required to quantify the accuracy of these systems under field conditions. It is the recommendation of this study that the use of instruments for routine monitoring of NH3 needs to be set out in standard operating protocols for inlet setup, calibration, and routine maintenance in order for datasets to be comparable

    Worldwide variations in artificial skyglow

    No full text
    Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope, and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ,25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ,5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program

    Worldwide variations in artificial skyglow

    No full text
    Despite constituting a widespread and significant environmental change, understanding of artificial nighttime skyglow is extremely limited. Until now, published monitoring studies have been local or regional in scope, and typically of short duration. In this first major international compilation of monitoring data we answer several key questions about skyglow properties. Skyglow is observed to vary over four orders of magnitude, a range hundreds of times larger than was the case before artificial light. Nearly all of the study sites were polluted by artificial light. A non-linear relationship is observed between the sky brightness on clear and overcast nights, with a change in behavior near the rural to urban landuse transition. Overcast skies ranged from a third darker to almost 18 times brighter than clear. Clear sky radiances estimated by the World Atlas of Artificial Night Sky Brightness were found to be overestimated by ~25%; our dataset will play an important role in the calibration and ground truthing of future skyglow models. Most of the brightly lit sites darkened as the night progressed, typically by ~5% per hour. The great variation in skyglow radiance observed from site-to-site and with changing meteorological conditions underlines the need for a long-term international monitoring program
    corecore