923 research outputs found

    TADPOL: A 1.3 mm Survey of Dust Polarization in Star-forming Cores and Regions

    Get PDF
    We present {\lambda}1.3 mm CARMA observations of dust polarization toward 30 star-forming cores and 8 star-forming regions from the TADPOL survey. We show maps of all sources, and compare the ~2.5" resolution TADPOL maps with ~20" resolution polarization maps from single-dish submillimeter telescopes. Here we do not attempt to interpret the detailed B-field morphology of each object. Rather, we use average B-field orientations to derive conclusions in a statistical sense from the ensemble of sources, bearing in mind that these average orientations can be quite uncertain. We discuss three main findings: (1) A subset of the sources have consistent magnetic field (B-field) orientations between large (~20") and small (~2.5") scales. Those same sources also tend to have higher fractional polarizations than the sources with inconsistent large-to-small-scale fields. We interpret this to mean that in at least some cases B-fields play a role in regulating the infall of material all the way down to the ~1000 AU scales of protostellar envelopes. (2) Outflows appear to be randomly aligned with B-fields; although, in sources with low polarization fractions there is a hint that outflows are preferentially perpendicular to small-scale B-fields, which suggests that in these sources the fields have been wrapped up by envelope rotation. (3) Finally, even at ~2.5" resolution we see the so-called "polarization hole" effect, where the fractional polarization drops significantly near the total intensity peak. All data are publicly available in the electronic edition of this article.Comment: 53 pages, 37 figures -- main body (13 pp., 3 figures), source maps (32 pp., 34 figures), source descriptions (8 pp.). Accepted by the Astrophysical Journal Supplemen

    A Risk Benefit Analysis of Mariculture as a means to Reduce the Impacts of Terrestrial Production of Food and Energy

    Get PDF
    The Scottish Aquaculture Research Forum (SARF) and WWF-UK commissioned this study to investigate whether the pressure on land and freshwater for future food and energy resources, and impacts on the climate, related to greenhouse gas (GHG) emissions, may be reduced through expansion of global mariculture. The study has undertaken a high level assessment of the ‘environmental footprint’ of global mariculture and terrestrial-based food and energy production systems through the collation and assessment of available Life Cycle Assessments (LCA) for key food products (beef, pork, chicken, freshwater finfish, marine finfish, shellfish and crustacean species) and biomass (terrestrial and algal) for energy production. The outputs of the footprint comparison were then used to assess the risks and benefits of increasing global mariculture, through the development of projected future scenarios in which mariculture contributes differing proportions of projected future food requirements. The analysis also qualitatively considered the socio-economic and wider environmental risks and benefits (e.g. in relation to ecosystem services) of global mariculture expansion, where expansion may occur geographically and whether future technological developments may help mitigate against identified impacts. The study identifies the key uncertainties and limitations of the risk/benefit analysis and makes prioritised recommendations on how these limitations can be addressed and the analysis developed for more regional or site-specific assessments

    Bouncing Universes with Varying Constants

    Full text link
    We investigate the behaviour of exact closed bouncing Friedmann universes in theories with varying constants. We show that the simplest BSBM varying-alpha theory leads to a bouncing universe. The value of alpha increases monotonically, remaining approximately constant during most of each cycle, but increasing significantly around each bounce. When dissipation is introduced we show that in each new cycle the universe expands for longer and to a larger size. We find a similar effect for closed bouncing universes in Brans-Dicke theory, where GG also varies monotonically in time from cycle to cycle. Similar behaviour occurs also in varying speed of light theories

    Episodic Occurrence of Field‐Aligned Energetic Ions on the Dayside

    Full text link
    The tens of kiloelectron volt ions observed in the ring current region at L ~ 3–7 generally have pancake pitch angle distributions, that is, peaked at 90°. However, in this study, by using the Van Allen Probe observations on the dayside, unexpectedly, we have found that about 5% time, protons with energies of ~30 to 50 keV show two distinct populations, having an additional field‐aligned population overlapping with the original pancake population. The newly appearing field‐aligned populations have higher occurrence rates at ~12–16 magnetic local time during geomagnetically active times. In particular, we have studied eight such events in detail and found that the source regions are located around 12 to 18 magnetic local time which coincides with our statistical result. Based on the ionospheric and geosynchronous observations, it is suggested that these energetic ions with field‐aligned pitch angle distributions probably are accelerated near postnoon in association with ionospheric disturbances that are triggered by tail injections.Plain Language SummaryProtons of different sources have different pitch angle distributions (PADs). For example, warm plasma cloak protons, which come directly from the ionosphere, have field‐aligned PADs, while ring current protons that generally originate from tail plasma sheet have pancake‐shaped PADs. In this study, unexpectedly, we have found that about 5% of the time on the dayside, protons of ring current energies show two distinct populations according to their PADs: higher fluxes of field‐aligned populations overlapping with the original pancake populations. The newly appeared field‐aligned populations have higher occurrence rates at ~12–16 magnetic local time during geomagnetically active times. In order to find the mechanism that generates these field‐aligned energetic proton populations, we have studied eight such events in detail by using the low‐altitude DMSP, POES satellites, and the NOAA‐LANL satellite at the geosynchronous orbit. The results imply that these energetic ions with field‐aligned PADs probably are accelerated by ionospheric disturbances that are triggered by tail injections. These results provide evidence of another possibly important source of the ring current ions.Key PointsWe have found that about 5% of the time on the dayside, protons with energies of ~30 to 50 keV have strong field‐aligned PADsThe field‐aligned PADs have higher occurrence rates at ~12‐16 MLT during geomagnetically active timesThese energetic field‐aligned ions possibly are accelerated by ionospheric disturbances triggered by tail injectionsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153687/1/grl60102_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153687/2/grl60102.pd

    Massless D-strings and moduli stabilization in type I cosmology

    Get PDF
    We consider the cosmological evolution induced by the free energy F of a gas of maximally supersymmetric heterotic strings at finite temperature and weak coupling in dimension D>=4. We show that F, which plays the role of an effective potential, has minima associated to enhanced gauge symmetries, where all internal moduli can be attracted and dynamically stabilized. Using the fact that the heterotic/type I S-duality remains valid at finite temperature and can be applied at each instant of a quasi-static evolution, we find in the dual type I cosmology that all internal NS-NS and RR moduli in the closed string sector and the Wilson lines in the open string sector can be stabilized. For the special case of D=6, the internal volume modulus remains a flat direction, while the dilaton is stabilized. An essential role is played by light D-string modes wrapping the internal manifold and whose contribution to the free energy cannot be omitted, even when the type I string is at weak coupling. As a result, the order of magnitude of the internal radii expectation values on the type I side is (lambda_I alpha')^{1/2}, where lambda_I is the ten-dimensional string coupling. The non-perturbative corrections to the type I free energy can alternatively be described as effects of "thermal E1-instantons", whose worldsheets wrap the compact Euclidean time cycle.Comment: 39 pages, 1 figur

    The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field

    Full text link
    The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5-year campaign, PiGSS will twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on time scales of days to years. We present here observations of a 10 deg^2 region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4-month period and has an rms flux density between 200 and 250 microJy. This represents a deeper image by a factor of 4 to 8 than we will achieve over the entire 10,000 deg^2. We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify ~100$ new flat spectrum radio sources; we project that when completed PiGSS will identify 10^4 flat spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous figure remove

    The Allen Telescope Array Pi GHz Sky Survey I. Survey Description and Static Catalog Results for the Bootes Field

    Get PDF
    The Pi GHz Sky Survey (PiGSS) is a key project of the Allen Telescope Array. PiGSS is a 3.1 GHz survey of radio continuum emission in the extragalactic sky with an emphasis on synoptic observations that measure the static and time-variable properties of the sky. During the 2.5-year campaign, PiGSS will twice observe ~250,000 radio sources in the 10,000 deg^2 region of the sky with b > 30 deg to an rms sensitivity of ~1 mJy. Additionally, sub-regions of the sky will be observed multiple times to characterize variability on time scales of days to years. We present here observations of a 10 deg^2 region in the Bootes constellation overlapping the NOAO Deep Wide Field Survey field. The PiGSS image was constructed from 75 daily observations distributed over a 4-month period and has an rms flux density between 200 and 250 microJy. This represents a deeper image by a factor of 4 to 8 than we will achieve over the entire 10,000 deg^2. We provide flux densities, source sizes, and spectral indices for the 425 sources detected in the image. We identify ~100$ new flat spectrum radio sources; we project that when completed PiGSS will identify 10^4 flat spectrum sources. We identify one source that is a possible transient radio source. This survey provides new limits on faint radio transients and variables with characteristic durations of months.Comment: Accepted for publication in ApJ; revision submitted with extraneous figure remove
    corecore