6,456 research outputs found

    From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter

    Get PDF
    Recent progress in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) provided extensive molecular mass data for complex natural organic matter (NOM). Structural information can be deduced solely from the molecular masses for ions with extreme molecular element ratios, in particular low H/C ratios, which are abundant in thermally altered NOM (e.g. black carbon). In this communication we propose a general aromaticity index (AI) and two threshold values as unequivocal criteria for the existence of either aromatic (AI > 0.5) or condensed aromatic structures (AI >= 0.67) in NOM. AI can be calculated from molecular formulae which are derived from exact molecular masses of naturally occurring compounds containing C, H, O, N, S and P and is especially applicable for substances with aromatic cores and few alkylations. In order to test the validity of our model index, AI is applied to FTICRMS data of a NOM deep-water sample from the Weddell Sea (Antarctica), a fulvic acid standard and an artificial dataset of all theoretically possible molecular formulae. For graphical evaluation a ternary plot is suggested for four-dimensional data representation. The proposed aromaticity index is a step towards structural identification of NOM and the molecular identification of black carbon in the environment

    Quantum statistics of interacting dimer spin systems

    Get PDF
    The compound TlCuCl3 represents a model system of dimerized quantum spins with strong interdimer interactions. We investigate the triplet dispersion as a function of temperature by inelastic neutron scattering experiments on single crystals. By comparison with a number of theoretical approaches we demonstrate that the description of Troyer, Tsunetsugu, and Wurtz [Phys. Rev. B 50, 13 515 (1994)] provides an appropriate quantum statistical model for dimer spin systems at finite temperatures, where many-body correlations become particularly important

    Rotating Convection in an Anisotropic System

    Full text link
    We study the stability of patterns arising in rotating convection in weakly anisotropic systems using a modified Swift-Hohenberg equation. The anisotropy, either an endogenous characteristic of the system or induced by external forcing, can stabilize periodic rolls in the K\"uppers-Lortz chaotic regime. For the particular case of rotating convection with time-modulated rotation where recently, in experiment, chiral patterns have been observed in otherwise K\"uppers-Lortz-unstable regimes, we show how the underlying base-flow breaks the isotropy, thereby affecting the linear growth-rate of convection rolls in such a way as to stabilize spirals and targets. Throughout we compare analytical results to numerical simulations of the Swift-Hohenberg equation

    Time-dependent Ginzburg-Landau equations for mixed d- and s-wave superconductors

    Get PDF
    A set of coupled time-dependent Ginzburg-Landau equations (TDGL) for superconductors of mixed d- and s-wave symmetry are derived microscopically from the Gor'kov equations by using the analytical continuation technique. The scattering effects due to impurities with both nonmagnetic and magnetic interactions are considered. We find that the d- and s-wave components of the order parameter can have very different relaxation times in the presence of nonmagnetic impurities. This result is contrary to a set of phenomenologically proposed TDGL equations and thus may lead to new physics in the dynamics of flux motion.Comment: 22 pages, 6 figures are available upon request, to appear in Phys. Rev.

    Electron transport in strongly disordered structures

    Full text link
    Using the transfer matrix technique, we investigate the propagation of electron through a two dimensional disordered sample. We find that the spatial distribution of electrons is homogeneous only in the limit of weak disorder (diffusive transport regime). In the limit of very strong disorder, we identify a narrow channel through which the electron propagates from one side of the sample to the opposite side. Even in this limit, we prove the wave character of the electron propagation.Comment: Presented at ETOPIM

    Constraining the dense matter equation-of-state with radio pulsars

    Full text link
    Radio pulsars provide some of the most important constraints for our understanding of matter at supranuclear densities. So far, these constraints are mostly given by precision mass measurements of neutron stars (NS). By combining single measurements of the two most massive pulsars, J0348++0432 and J0740++6620, the resulting lower limit of 1.98 M⊙M_\odot (99% confidence) of the maximum NS mass, excludes a large number of equations of state (EOSs). Further EOS constraints, complementary to other methods, are likely to come from the measurement of the moment of inertia (MOI) of binary pulsars in relativistic orbits. The Double Pulsar, PSR J0737−-3039A/B, is the most promising system for the first measurement of the MOI via pulsar timing. Reviewing this method, based in particular on the first MeerKAT observations of the Double Pulsar, we provide well-founded projections into the future by simulating timing observations with MeerKAT and the SKA. For the first time, we account for the spin-down mass loss in the analysis. Our results suggest that an MOI measurement with 11% accuracy (68% confidence) is possible by 2030. If by 2030 the EOS is sufficiently well known, however, we find that the Double Pulsar will allow for a 7% test of Lense-Thirring precession, or alternatively provide a ∼3σ\sim3\sigma-measurement of the next-to-leading order gravitational wave damping in GR. Finally, we demonstrate that potential new discoveries of double NS systems with orbital periods shorter than that of the Double Pulsar promise significant improvements in these measurements and the constraints on NS matter.Comment: 13 pages, 8 figures. Accepted by MNRA

    Comparison in the immunological properties of Borrelia burgdorferi isolates from Ixodes ricinus derived from three endemic areas in Switzerland

    Get PDF
    Borrelia burgdorferi isolates were obtained from Ixodes ricinus from three sites in Switzerland. They were examined by SDS-PAGE and immunoblotting. The phenotypes, in respect of three outer surface proteins (Osp), differed between the sites of collection. In site 1, most isolates had an OspA of 31 kDa and an OspB of 34 kDa: in site 2, isolates presenting an OspA of 33 kDa dominated and in site 3, the isolates with an OspA of 32 kDa and an OspB of 35 kDa were most frequent. This distribution differed significantly. About half of the isolates from sites 1 and 3 reacted with anti-OspA monoclonal antibody H5332 compared to 29% from site 2. Site 1 isolates reacted significantly more frequently (81 %) with another anti-OspA monoclonal antibody LA-31 than isolates from site 3 (P < 0·0001). These findings have implications for the epidemiology of Lyme borreliosis, for the further development of serodiagnostic reagents and for the development of a vaccin

    Upper bounds on the size of 4- and 6-cycle-free subgraphs of the hypercube

    Full text link
    In this paper we modify slightly Razborov's flag algebra machinery to be suitable for the hypercube. We use this modified method to show that the maximum number of edges of a 4-cycle-free subgraph of the n-dimensional hypercube is at most 0.6068 times the number of its edges. We also improve the upper bound on the number of edges for 6-cycle-free subgraphs of the n-dimensional hypercube from the square root of 2 - 1 to 0.3755 times the number of its edges. Additionally, we show that if the n-dimensional hypercube is considered as a poset, then the maximum vertex density of three middle layers in an induced subgraph without 4-cycles is at most 2.15121 times n choose n/2.Comment: 14 pages, 9 figure

    Gravitational signal propagation in the double pulsar studied with the MeerKAT telescope

    Get PDF
    The double pulsar PSR J0737−3039A/B has offered a wealth of gravitational experiments in the strong-field regime, all of which general relativity has passed with flying colours. In particular, among current gravity experiments that test photon propagation, the double pulsar probes the strongest spacetime curvature. Observations with MeerKAT and, in the future, the Square Kilometre Array (SKA) can greatly improve the accuracy of current tests and facilitate tests of next-to-leading-order (NLO) contributions in both orbital motion and signal propagation. We present our timing analysis of new observations of PSR J0737−3039A, made using the MeerKAT telescope over the last three years. The increased timing precision offered by MeerKAT yields a measurement of Shapiro delay parameter s that it twice as good, and an improved mass measurements compared to previous studies. In addition, our results provide an independent confirmation of the NLO signal propagation effects and already surpass the previous measurement from 16 yr data by a factor of 1.65. These effects include the retardation effect due to the movement of the companion and the deflection of the signal by the gravitational field of the companion. We also investigate the novel effects that have been expected. For instance, we search for potential profile variations near superior conjunctions caused by shifts of the line of sight due to latitudinal signal deflection, and we find insignificant evidence with our current data. With simulations, we find that the latitudinal deflection delay is unlikely to be measured with timing because of its correlation with Shapiro delay. Furthermore, although it is currently not possible to detect the expected lensing correction to the Shapiro delay, our simulations suggest that this effect may be measured with the full SKA. Finally, we provide an improved analytical description for the signal propagation in the double pulsar system that meets the timing precision expected from future instruments such as the full SKA
    • …
    corecore