1,522 research outputs found

    Temporal correlations in population trends: Conservation implications from time-series analysis of diverse animal taxa

    Get PDF
    Population trends play a large role in species risk assessments and conservation planning, and species are often considered threatened if their recent rate of decline meets certain thresholds, regardless how large the population is. But how reliable an indicator of extinction risk is a single estimate of population trend? Given the integral role this decline-based approach has played in setting conservation priorities, it is surprising that it has undergone little empirical scrutiny. We compile an extensive global dataset of time series of abundance data for over 1300 vertebrate populations to provide the first major test of the predictability of population growth rates in nature. We divided each time series into assessment and response periods and examined the correlation between growth rates in the two time periods. In birds, population declines tended to be followed by further declines, but mammals, salmon, and other bony fishes showed the opposite pattern: past declines were associated with subsequent population increases, and vice versa. Furthermore, in these taxa subsequent growth rates were higher when initial declines were more severe. These patterns agreed with data simulated under a null model for a dynamically stable population experiencing density dependence. However, this type of result could also occur if conservation actions positively affected the population following initial declines—a scenario that our data were too limited to rigorously evaluate. This ambiguity emphasizes the importance of understanding the underlying causes of population trajectories in drawing inferences about rates of decline in abundance

    Association between air pollution and asthma admission among children in Hong Kong

    Get PDF
    OBJECTIVE: To examine the association of air pollutants with hospital admission for childhood asthma in Hong Kong. METHODS: Data on hospital admissions for asthma, influenza and total hospital admissions in children aged ≤18 years at all Hospital Authority hospitals during 1997–2002 were obtained. Data on daily mean concentrations of particles with aerodynamic diameter <10 μm (i. e. PM(10)) and <2.5 μm (i. e. PM(2.5)), nitrogen dioxide (NO(2)), sulphur dioxide (SO(2)), and ozone (O(3)) and data on meteorological variables were associated with asthma hospital admissions using Poisson's regression with generalized additive models for correction of yearly trend, temperature, humidity, day-of-week effect, holiday, influenza admissions and total hospital admission. The possibility of a lag effect of each pollutant and the interaction of different pollutants were also examined. RESULTS: The association between asthma admission with change of NO(2), PM(10), PM(2.5) and O(3) levels remained significant after adjustment for multi-pollutants effect and confounding variables, with increase in asthma admission rate of 5.64% (3.21–8.14) at lag 3 for NO(2), 3.67% (1.52–5.86) at lag 4 for PM(10), 3.24% (0.93–5.60) at lag 4 for PM(2.5) and 2.63% (0.64–4.67) at lag 2 for O(3). Effect of SO(2) was lost after adjustment. CONCLUSION: Ambient levels of PM(10), PM(2.5), NO(2) and O(3) are associated with childhood asthma hospital admission in Hong Kong

    Reductions in cardiovascular, cerebrovascular, and respiratory mortality following the national Irish smoking ban: Interrupted time-series analysis

    Get PDF
    Copyright @ 2013 Stallings-Smith et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Background: Previous studies have shown decreases in cardiovascular mortality following the implementation of comprehensive smoking bans. It is not known whether cerebrovascular or respiratory mortality decreases post-ban. On March 29, 2004, the Republic of Ireland became the first country in the world to implement a national workplace smoking ban. The aim of this study was to assess the effect of this policy on all-cause and cause-specific, non-trauma mortality. Methods: A time-series epidemiologic assessment was conducted, utilizing Poisson regression to examine weekly age and gender-standardized rates for 215,878 non-trauma deaths in the Irish population, ages ≥35 years. The study period was from January 1, 2000, to December 31, 2007, with a post-ban follow-up of 3.75 years. All models were adjusted for time trend, season, influenza, and smoking prevalence. Results: Following ban implementation, an immediate 13% decrease in all-cause mortality (RR: 0.87; 95% CI: 0.76-0.99), a 26% reduction in ischemic heart disease (IHD) (RR: 0.74; 95% CI: 0.63-0.88), a 32% reduction in stroke (RR: 0.68; 95% CI: 0.54-0.85), and a 38% reduction in chronic obstructive pulmonary disease (COPD) (RR: 0.62; 95% CI: 0.46-0.83) mortality was observed. Post-ban reductions in IHD, stroke, and COPD mortalities were seen in ages ≥65 years, but not in ages 35-64 years. COPD mortality reductions were found only in females (RR: 0.47; 95% CI: 0.32-0.70). Post-ban annual trend reductions were not detected for any smoking-related causes of death. Unadjusted estimates indicate that 3,726 (95% CI: 2,305-4,629) smoking-related deaths were likely prevented post-ban. Mortality decreases were primarily due to reductions in passive smoking. Conclusions: The national Irish smoking ban was associated with immediate reductions in early mortality. Importantly, post-ban risk differences did not change with a longer follow-up period. This study corroborates previous evidence for cardiovascular causes, and is the first to demonstrate reductions in cerebrovascular and respiratory causes

    External costs of atmospheric Pb emissions: valuation of neurotoxic impacts due to inhalation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Impact Pathway Approach (IPA) is an innovative methodology to establish links between emissions, related impacts and monetary estimates. Only few attempts have so far been presented regarding emissions of metals; in this study the external costs of airborne lead (Pb) emissions are assessed using the IPA. Exposure to Pb is known to provoke impacts especially on children's cognition. As cognitive abilities (measured as IQ, intelligence quotient) are known to have implications for lifetime income, a pathway can be established leading from figures for Pb emissions to the implied loss in earnings, and on this basis damage costs per unit of Pb emission can be assessed.</p> <p>Methods</p> <p>Different types of models are here linked. It is relatively straightforward to establish the relationship between Pb emissions and consequent increase in air-Pb concentration, by means of a Gaussian plume dispersion model (OML). The exposed population can then be modelled by linking the OML-output to population data nested in geo-referenced grid cells. Less straightforward is to establish the relationship between exposure to air-Pb concentrations and the resulting blood-Pb concentration. Here an Age-Dependent Biokinetic Model (ADBM) for Pb is applied. On basis of previous research which established links between increases in blood-Pb concentrations during childhood and resulting IQ-loss we arrive at our results.</p> <p>Results</p> <p>External costs of Pb airborne emissions, even at low doses, in our site are in the range of 41-83 €/kg emitted Pb, depending on the considered meteorological year. This estimate applies only to the initial effects of air-Pb, as our study does not address the effects due to the Pb environmental-accumulation and to the subsequent Pb re-exposure. These are likely to be between one and two orders of magnitude higher.</p> <p>Conclusions</p> <p>Biokinetic modelling is a novel tool not previously included when applying the IPA to explore impacts of Pb emissions and related external costs; it allows for more fine-tuned, age-dependent figures for the external costs from low-dose exposure. Valuation of additional health effects and impacts e.g. due to exposure via ingestion appear to be feasible when extending the insights from the present pilot study.</p

    Particulate air pollution and survival in a COPD cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have shown cross-sectional associations between long term exposure to particulate air pollution and survival in general population or convenience cohorts. Less is known about susceptibility, or year to year changes in exposure. We investigated whether particles were associated with survival in a cohort of persons with COPD in 34 US cities, eliminating the usual cross-sectional exposure and treating PM<sub>10 </sub>as a within city time varying exposure.</p> <p>Methods</p> <p>Using hospital discharge data, we constructed a cohort of persons discharged alive with chronic obstructive pulmonary disease using Medicare data between 1985 and 1999. 12-month averages of PM<sub>10 </sub>were merged to the individual annual follow up in each city. We applied Cox's proportional hazard regression model in each city, with adjustment for individual risk factors.</p> <p>Results</p> <p>We found significant associations in the survival analyses for single year and multiple lag exposures, with a hazard ratio for mortality for an increase of 10 μg/m<sup>3 </sup>PM<sub>10 </sub>over the previous 4 years of 1.22 (95% CI: 1.17–1.27).</p> <p>Conclusion</p> <p>Persons discharged alive for COPD have substantial mortality risks associated with exposure to particles. The risk is evident for exposure in the previous year, and higher in a 4 year distributed lag model. These risks are significantly greater than seen in time series analyses.</p

    Exoplanet Atmosphere Measurements from Transmission Spectroscopy and other Planet-Star Combined Light Observations

    Full text link
    It is possible to learn a great deal about exoplanet atmospheres even when we cannot spatially resolve the planets from their host stars. In this chapter, we overview the basic techniques used to characterize transiting exoplanets - transmission spectroscopy, emission and reflection spectroscopy, and full-orbit phase curve observations. We discuss practical considerations, including current and future observing facilities and best practices for measuring precise spectra. We also highlight major observational results on the chemistry, climate, and cloud properties of exoplanets.Comment: Accepted review chapter; Handbook of Exoplanets, eds. Hans J. Deeg and Juan Antonio Belmonte (Springer-Verlag). 22 pages, 6 figure

    Membrane Tension Orchestrates Rear Retraction in Matrix-Directed Cell Migration.

    Get PDF
    In development, wound healing, and cancer metastasis, vertebrate cells move through 3D interstitial matrix, responding to chemical and physical guidance cues. Protrusion at the cell front has been extensively studied, but the retraction phase of the migration cycle is not well understood. Here, we show that fast-moving cells guided by matrix cues establish positive feedback control of rear retraction by sensing membrane tension. We reveal a mechanism of rear retraction in 3D matrix and durotaxis controlled by caveolae, which form in response to low membrane tension at the cell rear. Caveolae activate RhoA-ROCK1/PKN2 signaling via the RhoA guanidine nucleotide exchange factor (GEF) Ect2 to control local F-actin organization and contractility in this subcellular region and promote translocation of the cell rear. A positive feedback loop between cytoskeletal signaling and membrane tension leads to rapid retraction to complete the migration cycle in fast-moving cells, providing directional memory to drive persistent cell migration in complex matrices

    Exploratory analysis of a phase III trial of pirfenidone identifies a subpopulation of patients with idiopathic pulmonary fibrosis as benefiting from treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A phase III trial in Japan showed that pirfenidone is effective for idiopathic pulmonary fibrosis (IPF). To find out which patients specifically benefit from pirfenidone, we analyzed in an exploratory manner the data from the phase III trial.</p> <p>Methods</p> <p>The patients in the phase III trial were stratified by baseline percentage predicted vital capacity (%VC), arterial oxygen partial pressure (PaO<sub>2</sub>), and the lowest oxygen saturation by pulse oximetry (SpO<sub>2</sub>) during the 6-minute steady-state exercise test (6MET). In the subpopulations, changes in VC and subjective symptoms (cough and dyspnea on the Fletcher, Hugh-Jones [F, H-J] Classification scale) were evaluated in patients treated with high-dose (1800 mg/day) pirfenidone, low-dose (1200 mg/day) pirfenidone, and placebo at week 52.</p> <p>Results</p> <p>Significant efficacy of pirfenidone in reducing the decline in VC could be seen in a subpopulation having %VC ≥ 70% and SpO<sub>2 </sub>< 90% at baseline. This favorable effect was accompanied by categorical change in VC and progression-free survival time. In the subpopulation, pirfenidone significantly suppressed cough and dyspnea.</p> <p>Conclusions</p> <p>IPF patients having %VC ≥ 70% and SpO<sub>2 </sub>< 90% at baseline will most likely benefit from pirfenidone when evaluated using changes in VC (and %VC), and cough and dyspnea symptoms. This subpopulation could expect to benefit most from pirfenidone treatment.</p> <p>Trial Registration</p> <p>This clinical trial was registered with the Japan Pharmaceutical Information Center (JAPIC) on September 13th, 2005 (Registration Number: JAPICCTI-050121).</p

    The Peripheral Blood Transcriptome Identifies the Presence and Extent of Disease in Idiopathic Pulmonary Fibrosis

    Get PDF
    <div><h3>Rationale</h3><p>Peripheral blood biomarkers are needed to identify and determine the extent of idiopathic pulmonary fibrosis (IPF). Current physiologic and radiographic prognostic indicators diagnose IPF too late in the course of disease. We hypothesize that peripheral blood biomarkers will identify disease in its early stages, and facilitate monitoring for disease progression.</p> <h3>Methods</h3><p>Gene expression profiles of peripheral blood RNA from 130 IPF patients were collected on Agilent microarrays. Significance analysis of microarrays (SAM) with a false discovery rate (FDR) of 1% was utilized to identify genes that were differentially-expressed in samples categorized based on percent predicted D<sub>L</sub>CO and FVC.</p> <h3>Main Measurements and Results</h3><p>At 1% FDR, 1428 genes were differentially-expressed in mild IPF (D<sub>L</sub>CO >65%) compared to controls and 2790 transcripts were differentially- expressed in severe IPF (D<sub>L</sub>CO >35%) compared to controls. When categorized by percent predicted D<sub>L</sub>CO, SAM demonstrated 13 differentially-expressed transcripts between mild and severe IPF (< 5% FDR). These include CAMP, CEACAM6, CTSG, DEFA3 and A4, OLFM4, HLTF, PACSIN1, GABBR1, IGHM, and 3 unknown genes. Principal component analysis (PCA) was performed to determine outliers based on severity of disease, and demonstrated 1 mild case to be clinically misclassified as a severe case of IPF. No differentially-expressed transcripts were identified between mild and severe IPF when categorized by percent predicted FVC.</p> <h3>Conclusions</h3><p>These results demonstrate that the peripheral blood transcriptome has the potential to distinguish normal individuals from patients with IPF, as well as extent of disease when samples were classified by percent predicted D<sub>L</sub>CO, but not FVC.</p> </div
    corecore