54 research outputs found

    Personnalisation d'analyses décisionnelles sur des données multidimensionnelles

    Get PDF
    This thesis investigates OLAP analysis personalization within multidimensional databases. OLAP analyse is modeled through a graph where nodes represent the analysis contexts and graph edges represent the user operations. The analysis context regroups the user query as well as result. It is well described by a specific tree structure that is independent on the visualization structures of data and query languages. We provided a model for user preferences on the multidimensional schema and values. Each preference is associated with a specific analysis context. Based on previous models, we proposed a generic framework that includes two personalization processes. First process, denoted query personalization, aims to enhancing user query with related preferences in order to produce a new one that generates a personalized result. Second personalization process is query recommendation that allows helping user throughout the OLAP data exploration phase. Our recommendation framework supports three recommendation scenarios, i.e., assisting user in query composition, suggesting the forthcoming query, and suggesting alternative queries. Recommendations are built progressively basing on user preferences. In order to implement our framework, we developed a prototype system that supports query personalization and query recommendation processes. We present experimental results showing the efficiency and the effectiveness of our approaches.Le travail prĂ©sentĂ© dans cette thĂšse aborde la problĂ©matique de la personnalisation des analyses OLAP au sein des bases de donnĂ©es multidimensionnelles. Une analyse OLAP est modĂ©lisĂ©e par un graphe dont les noeuds reprĂ©sentent les contextes d'analyse et les arcs traduisent les opĂ©rations de l'utilisateur. Le contexte d'analyse regroupe la requĂȘte et le rĂ©sultat. Il est dĂ©crit par un arbre spĂ©cifique qui est indĂ©pendant des structures de visualisation des donnĂ©es et des langages de requĂȘte. Par ailleurs, nous proposons un modĂšle de prĂ©fĂ©rences utilisateur exprimĂ©es sur le schĂ©ma multidimensionnel et sur les valeurs. Chaque prĂ©fĂ©rence est associĂ©e Ă  un contexte d'analyse particulier. En nous basant sur ces modĂšles, nous proposons un cadre gĂ©nĂ©rique comportant deux mĂ©canismes de personnalisation. Le premier mĂ©canisme est la personnalisation de requĂȘte. Il permet d'enrichir la requĂȘte utilisateur Ă  l'aide des prĂ©fĂ©rences correspondantes afin de gĂ©nĂ©rer un rĂ©sultat qui satisfait au mieux aux besoins de l'usager. Le deuxiĂšme mĂ©canisme de personnalisation est la recommandation de requĂȘtes qui permet d'assister l'utilisateur tout au long de son exploration des donnĂ©es OLAP. Trois scĂ©narios de recommandation sont dĂ©finis : l'assistance Ă  la formulation de requĂȘte, la proposition de la prochaine requĂȘte et la suggestion de requĂȘtes alternatives. Ces recommandations sont construites progressivement Ă  l'aide des prĂ©fĂ©rences de l'utilisateur. Afin valider nos diffĂ©rentes contributions, nous avons dĂ©veloppĂ© un prototype qui intĂšgre les mĂ©canismes de personnalisation et de recommandation de requĂȘte proposĂ©s. Nous prĂ©sentons les rĂ©sultats d'expĂ©rimentations montrant la performance et l'efficacitĂ© de nos approches. Mots-clĂ©s: OLAP, analyse dĂ©cisionnelle, personnalisation de requĂȘte, systĂšme de recommandation, prĂ©fĂ©rence utilisateur, contexte d'analyse, appariement d'arbres de contexte

    Towards activity recommendation from lifelogs

    Get PDF
    With the increasing availability of passive, wearable sensor devices, digital lifelogs can now be captured for individuals. Lifelogs contain a digital trace of a person’s life, and are characterised by large quantities of rich contextual data. In this paper, we propose a content-based recommender sys- tem to leverage such lifelogs to suggest activities to users. We model lifelogs as timelines of chronological sequences of activity objects, and describe a recommendation framework in which a two-level distance metric is proposed to measure the similarity between current and past timelines. An ini- tial evaluation of our activity recommender performed using a real-world lifelog dataset demonstrates the utility of our approach

    Personnalisation de SystÚmes OLAP Annotés

    Get PDF
    National audienceThis paper deals with personalization of annotated OLAP systems. Data constellation is extended to support annotations and user preferences. Annotations reflect the decision-maker experience whereas user preferences enable users to focus on the most interesting data. User preferences allow annotated contextual recommendations helping the decision-maker during his/her multidimensional navigations

    A combination of Kohn-Vogelius and DDM methods for a geometrical inverse problem

    Get PDF
    We consider the inverse geometrical problem of identifying the discontinuity curve of an electrical conductivity from boundary measurements. This standard inverse problem is used as a model to introduce and study a combined inversion algorithm coupling a gradient descent on the Kohn-Vogelius cost functional with a domain decomposition method that includes the unknown curve in the domain partitioning. We prove the local convergence of the method in a simplified case and numerically show its efficiency for some two dimensional experiments

    A SURVEY ON CONTROL TECHNIQUES OF A BENCHMARKED CONTINUOUS STIRRED TANK REACTOR

    Get PDF
    The study carried out in this paper unveils a survey on issues related to modelling problems control strategies of a Continuous Stirred Tank Reactor (CSTR), a highly nonlinear plant containing numbers of stable and unstable operating points is considered. The issues discussed are categorised into regulation, feedback linearization, flatness, observation and estimation as well as challenges related to equilibrium points concerning CSTR. In this study, the limited capability of a conventional PID controller is discussed based on preliminary description and a dynamic modelling of the nonlinear plant. Moreover, the limitations of the conventional PID is illustrated through a simulation using nonlinear model of CSTR carried out under input constraint and the presence of bounded disturbances. The result shows that a fixed PID will not guarantee consistent performance throughout operating set points. The feedback linearization formalism is presented to prove that only regulation in the neighbourhood of operating point is possible. Non-minimum phase property exhibited by a CSTR is investigated as well. Flatness control is demonstrated as one of the possible linearization control technique achieving the objective of the trajectory trackin

    An Artificial Neural Network for Solar Energy Prediction and Control Using Jaya-SMC

    Get PDF
    In recent years, researchers have focused on improving the efficiency of photovoltaic systems, as they have an extremely low efficiency compared to fossil fuels. An obvious issue associated with photovoltaic systems (PVS) is the interruption of power generation caused by changes in solar radiation and temperature. As a means of improving the energy efficiency performance of such a system, it is necessary to predict the meteorological conditions that affect PV modules. As part of the proposed research, artificial neural networks (ANNs) will be used for the purpose of predicting the PV system’s current and voltage by predicting the PV system’s operating temperature and radiation, as well as using JAYA-SMC hybrid control in the search for the MPP and duty cycle single-ended primary-inductor converter (SEPIC) that supplies a DC motor. Data sets of size 60538 were used to predict temperature and solar radiation. The data set had been collected from the Department of Systems Engineering and Automation at the Vitoria School of Engineering of the University of the Basque Country. Analyses and numerical simulations showed that the technique was highly effective. In combination with JAYA-SMC hybrid control, the proposed method enabled an accurate estimation of maximum power and robustness with reasonable generality and accuracy (regression (R) = 0.971, mean squared error (MSE) = 0.003). Consequently, this study provides support for energy monitoring and control

    Solving quaternion nonsymmetric algebraic Riccati equations through zeroing neural networks

    Get PDF
    Many variations of the algebraic Riccati equation (ARE) have been used to study nonlinear system stability in the control domain in great detail. Taking the quaternion nonsymmetric ARE (QNARE) as a generalized version of ARE, the time-varying QNARE (TQNARE) is introduced. This brings us to the main objective of this work: finding the TQNARE solution. The zeroing neural network (ZNN) technique, which has demonstrated a high degree of effectiveness in handling time-varying problems, is used to do this. Specifically, the TQNARE can be solved using the high order ZNN (HZNN) design, which is a member of the family of ZNN models that correlate to hyperpower iterative techniques. As a result, a novel HZNN model, called HZ-QNARE, is presented for solving the TQNARE. The model functions fairly well, as demonstrated by two simulation tests. Additionally, the results demonstrated that, while both approaches function remarkably well, the HZNN architecture works better than the ZNN architecture
    • 

    corecore