214 research outputs found

    Signatures of a minimal length scale in high precision experiments

    Get PDF
    We discuss modifications of the gyromagnetic moment of electrons and muons due to a minimal length scale combined with a modified fundamental scale MfM_f. First-order deviations from the theoretical standard model value for g−2g-2 due to these String Theory-motivated effects are derived. A constraint of Mf>577GeVM_f>577 GeV for the new fundamental scale is given.Comment: Proceedings of the Nuclear Physics Winter Meeting 2004, Bormio, Ital

    Generalized Uncertainty Principle, Modified Dispersion Relation and Barrier penetration by a Dirac particle

    Full text link
    We have studied the energy band structure of a Dirac particle in presence of a generalised uncertainty principle (GUP). We start from defining a modified momentum operator and derive corresponding modified dispersion relation (MDR) and GUP. Apart from the forbidden band within the range ±m\pm m, mm being the mass of the particle, we find the existence of additional forbidden bands at the both ends of the spectrum. Such band structure forbids a Dirac particle to penetrate a potential step of sufficient height (∌EP\sim E_P, EPE_P being Planck energy). This is also true for massless particle. Unlike the relativistic case, a massless particle also can reflect from a barrier of sufficient height. Finally we discuss about the Klein's paradox in presence of the GUP.Comment: 10 pages, 7 figures, LaTe

    Some Aspects of Minimal Length Quantum Mechanics

    Full text link
    String theory, quantum geometry, loop quantum gravity and black hole physics all indicate the existence of a minimal observable length on the order of Planck length. This feature leads to a modification of Heisenberg uncertainty principle. Such a modified Heisenberg uncertainty principle is referred as gravitational uncertainty principle(GUP) in literatures. This proposal has some novel implications on various domains of theoretical physics. Here, we study some consequences of GUP in the spirit of Quantum mechanics. We consider two problem: a particle in an one-dimensional box and momentum space wave function for a "free particle". In each case we will solve corresponding perturbational equations and compare the results with ordinary solutions.Comment: 9 pages, one eps figur

    Black Hole Relics in Large Extra Dimensions

    Get PDF
    Recent calculations applying statistical mechanics indicate that under the assumption of compactified large extra dimensions a black hole might evolve into a (quasi-)stable state with mass close to the new fundamental scale MfM_f. Black holes and therefore their relics might be produced at the {\sc LHC} in the case of extra-dimensional topologies. In this energy regime, Hawking's evaporation scenario is modified due to energy conservation and quantum effects. We reanalyse the evaporation of small black holes including the quantisation of the emitted radiation due to the finite surface of the black hole. It is found that observable stable black hole relics with masses ∌1−3Mf\sim 1-3 M_f are formed which can be identified by a delayed single jet with a corresponding hard momentum kick to the relic and by ionisation, e.g. in a TPC

    A revision of the Generalized Uncertainty Principle

    Full text link
    The Generalized Uncertainty Principle arises from the Heisenberg Uncertainty Principle when gravity is taken into account, so the leading order correction to the standard formula is expected to be proportional to the gravitational constant GN=LPl2G_N = L_{Pl}^2. On the other hand, the emerging picture suggests a set of departures from the standard theory which demand a revision of all the arguments used to deduce heuristically the new rule. In particular, one can now argue that the leading order correction to the Heisenberg Uncertainty Principle is proportional to the first power of the Planck length LPlL_{Pl}. If so, the departures from ordinary quantum mechanics would be much less suppressed than what is commonly thought.Comment: 6 pages, 1 figur

    On gravity as an entropic force

    Full text link
    We consider E. Verlinde's proposal that gravity is an entropic force -- we shall call this theory entropic gravity (EG) -- and reanalyze a recent claim that this theory is in contradiction with the observation of the gravitationally-bound ground state of neutrons in the GRANIT experiment. We find that EG does not necessarily contradict the existence of gravitationally-bound quantum states of neutrons in the Earth's gravitational field, since EG is equivalent to Newtonian gravity in this case. However, certain transitions between the gravitationally-bound quantum states of neutrons, in particular spontaneous decays of excited states, which can hopefully be observed in future experiments, cannot be explained in the framework of EG, unless essential ingredients are introduced into it. Otherwise, a quantized description of gravity will be required.Comment: 6 pages, v2: the possibility that graviton may appear as an emergent concept in EG is noted, few improvements in arguments and presentation, some typos and grammar corrected. To appear in Phys. Lett.

    TeV-Scale Black Hole Lifetimes in Extra-Dimensional Lovelock Gravity

    Full text link
    We examine the mass loss rates and lifetimes of TeV-scale extra dimensional black holes (BH) in ADD-like models with Lovelock higher-curvature terms present in the action. In particular we focus on the predicted differences between the canonical and microcanonical ensemble statistical mechanics descriptions of the Hawking radiation that results in the decay of these BH. In even numbers of extra dimensions the employment of the microcanonical approach is shown to generally lead to a significant increase in the BH lifetime as in case of the Einstein-Hilbert action. For odd numbers of extra dimensions, stable BH remnants occur when employing either description provided the highest order allowed Lovelock invariant is present. However, in this case, the time dependence of the mass loss rates obtained employing the two approaches will be different. These effects are in principle measurable at future colliders.Comment: 27 pages, 9 figs; Refs. and discussion adde

    Quantum gravity effects on statistics and compact star configurations

    Full text link
    The thermodynamics of classical and quantum ideal gases based on the Generalized uncertainty principle (GUP) are investigated. At low temperatures, we calculate corrections to the energy and entropy. The equations of state receive small modifications. We study a system comprised of a zero temperature ultra-relativistic Fermi gas. It turns out that at low Fermi energy ΔF\varepsilon_F, the degenerate pressure and energy are lifted. The Chandrasekhar limit receives a small positive correction. We discuss the applications on configurations of compact stars. As ΔF\varepsilon_F increases, the radius, total number of fermions and mass first reach their nonvanishing minima and then diverge. Beyond a critical Fermi energy, the radius of a compact star becomes smaller than the Schwarzschild one. The stability of the configurations is also addressed. We find that beyond another critical value of the Fermi energy, the configurations are stable. At large radius, the increment of the degenerate pressure is accelerated at a rate proportional to the radius.Comment: V2. discussions on the stability of star configurations added, 17 pages, 2 figures, typos corrected, version to appear in JHE
    • 

    corecore