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Signatures of a minimal length scale in high precision experiments
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We discuss modifications of the gyromagnetic moment of electrons and muons due to a

minimal length scale combined with a modified fundamental scaleMf . First-order deviations

from the theoretical standard model value for g − 2 due to these String Theory-motivated

effects are derived. Constraints for the new fundamental scale Mf are given.

I. MOTIVATION AND INTRODUCTION

Although the standard model is a powerful tool to explain the physics of the very basic con-

stituents of matter, it is far from being an exhaustive description of our world. Many questions

remain unanswered: What causes the existence of three particle generations? Where do the various

quark and lepton masses and coupling constants come from? How to unite gravity and quantum

theory? Why is gravity so weak compared to the other forces? Theories such as M-Theory and

Superstrings try to give a hint on these questions, but they do not (yet) provide us with measurable

quantities. Nevertheless, there are some general features that seem to go hand in hand with all

promising candidates for a theory of quantum gravity:

• the need for a higher dimensional space-time and

• the existence of a minimal length scale.

In this paper, we study implications of these extensions in the Dirac equation without the aim to

derive them from a first principle theory. Instead we will analyse possible observable modifications
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that may arise by combining the main features of both extra dimensions and a minimal length

scale in a simplified model.

II. LARGE EXTRA DIMENSIONS

The idea of Large eXtra Dimensions (LXDs) which was recently proposed in [1, 2, 3, 4, 5]

might allow to study first effects of unification or quantum gravity in near future experiments. In

these models, only gravitons can propagate into the d compactified LXDs. The standard model

particles are bound to our (3+1)-dimensional sub-manifold, often called our 3-brane. This results

in a decrease of the Planck scale to a new fundamental scale Mf and gives rise to the exciting

possibility of TeV scale GUTs [6]. Therefore, not only the notion of further dimensions of space-

time is incorporated, but also the hierarchy-problem is solved, although one might claim it is only

shifted to the geometrical sector.

In [1], the following relation between the four-dimensional Planck mass mp and the higher

dimensional fundamental scale Mf is derived:

m2
p = RdMd+2

f , (1)

where R is the radius of the LXDs. This is a consequence of Gauss’ law in 3 + d spatial

dimensions: Two test masses m1, m2 within a distance below the compactification radius will feel

the gravitational potential

V (r)

m1

∼
1

Md+2
f rd

m2

r
, (r ≪ R).

At distances above the compactification radius, the gravitational flux lines are not further

dissolved into the extra dimensions, and one has to regain the usual potential in three spatial

dimensions

1

Md+2
f Rd

m2

r

r≫R
∼

1

m2
p

m2

r
,

which directly yields (1).

This lowered fundamental scale leads to a vast number of observable phenomena of quantum

gravity at energies in the range of Mf . In fact, the non-observation of these predicted features
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in past experiments gives first constraints on the parameters of the model, the number of extra

dimensions d and the fundamental scale Mf [7, 8]. This scenario has major consequences:

• Cosmology and astrophysics: Modification of inflation in the early universe and enhanced

supernova-cooling due to graviton emission [3, 9, 10, 11, 12].

• Additional processes are expected in high-energetic lepton and hadron interactions [13, 14]:

production of real and virtual gravitons [15, 16, 17, 18, 19] and the creation of black holes

at energies that can be achieved at colliders in the near future [20, 21, 22, 23, 24, 25, 26]

and in ultra high energetic cosmic rays [27].

• One also has to expect the influence of the extra dimensions on high precision measurements;

the most obvious being the modification of Newton’s law at small distances [28, 29, 30].

• Of highest interest are also modifications of the gyromagnetic moment of Dirac particles

which promises new insight into non-standard model couplings and effects [31, 32, 33, 34,

35, 36].

Thus, new phenomena might either be encountered in high energy or high precision experiments.

III. THE MINIMAL SCALE

As discussed above, String theory suggests the existence of a minimal length scale. In pertur-

bative string theory [37, 38], the feature of a fundamental minimal length scale arises from the

fact that strings can not probe distances smaller than the string scale. If the energy of a string

reaches the Planck mass mp, excitations of the string can occur and increase the extension [39].

Due to this, uncertainty in position measurement can never become smaller than lp = h̄/mp. For

a detailed review, the reader is referred to Refs. [40, 41].

However, in the present model with LXDs, this fact grows important for collider physics at high

energies or for high precision measurements at low energies due to the lowered fundamental scale

Mf , which results in a new fundamental length scale Lf = h̄/Mf .

Naturally, this minimum length uncertainty is related to a modification of the standard com-

mutation relations between position and momentum [42, 43]. Application of this is of high interest

for quantum fluctuations in the early universe and inflation [44, 45, 46, 47, 48, 49, 50, 51, 52]. We

will follow the propositions made in [53, 54].
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IV. INCORPORATION INTO QUANTUM THEORY

In order to implement the notion of a minimal length Lf , let us now suppose that one increases

the momentum p of a particle arbitrarily, but that the wave number k has an upper bound. This

effect leads to pronounced deviations from the linear dependence when p approaches the scale

Mf . The physical interpretation of this is that particles can not possess arbitrarily small Compton

wavelengths λ = 2π/k so that arbitrarily small scales cannot be resolved anymore.

To incorporate this behaviour, we assume a relation k = k(p) between p and k which is an

uneven function (because of parity) and which asymptotically approaches 1/Lf . Furthermore, we

demand the functional relation between the energy E and the frequency ω to be the same as that

between the wave vector k and the momentum p. A possible choice for the relations is

Lfk(p) = tanh1/γ

[(

p

Mf

)γ]

, (2)

Lfω(E) = tanh1/γ

[(

E

Mf

)γ]

, (3)

with a real, positive constant γ.

In the following, we restrict our study to the low momentum approximation, namely the regime

of first effects including the orders (p/Mf )3. For this purpose, we expand the function in a Taylor

series for small arguments.

Because the exact functional dependence is unknown, we assume an arbitrary factor α in front of

the order (p/Mf )3-term. Therefore the relations for k(p) and ω(E) which are used in the following

are

Lfk(p) ≈
p

Mf
− α

(

p

Mf

)3

, (4)

Lfω(E) ≈
E

Mf
− α

(

E

Mf

)3

, (5)

1

Mf
p(k) ≈ kLf + α (kLf )3 , (6)

1

Mf
E(ω) ≈ ωLf + α (ωLf )3 , (7)

with α being of order one (e.g. α = 1/3 for γ = 1), but in general negative values of α can not be

excluded.

This yields to 3rd order

1

h̄

∂p

∂k
≈ 1 + 3α

(

p

Mf

)2

. (8)
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The quantisation of these relations is straight forward. The commutators between k̂ and x̂

remain in the standard form:

[x̂i, k̂j ] = iδij . (9)

Inserting the functional relation between the wave vector and the momentum then yields the

modified commutator for the momentum. With the commutator relation

[ x̂, Â(k)] = +i
∂A

∂k
, (10)

the modified commutator algebra now reads

[ x̂, p̂] = +i
∂p

∂k
. (11)

This results in the generalised uncertainty relation

∆p∆x ≥
1

2

∣

∣

∣

∣

∣

〈

∂p

∂k

〉

∣

∣

∣

∣

∣

. (12)

With the approximations (4)-(7), the results of Ref. [44] are reproduced up to the factor α:

[x̂, p̂] ≈ ih̄

(

1 + 3α
p̂2

M2
f

)

(13)

giving the generalised uncertainty relation

∆p∆x ≥
1

2
h̄

(

1 + 3α
〈p̂2〉

M2
f

)

. (14)

We give the operators in the position representation which is suited best for this purpose:

x̂ = x , k̂ = −i∂x

p̂ = p̂(k̂) , (15)

yielding the new momentum operator

p̂(k̂) ≈ −ih̄
(

1 − αL2
f∂

2
x

)

∂x . (16)

In ordinary relativistic quantum mechanics the Hamiltonian of the Dirac Particle is 1

Ĥ = ih̄∂0 = γ0
(

ih̄γi∂i +m
)

. (17)

1 Greek indices run from 0 to 3, roman indices run from 1 to 3.
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This leads to the Dirac Equation

(p/−m)ψ = 0 , (18)

with the following standard abbreviation γνAν := A/ and pν = ih̄∂ν . To include the modifications

due to the generalised uncertainty principle, we start with the relation

Ê(ω) = γ0
(

γip̂i(k) +m
)

. (19)

Including the altered momentum wave vector relation p̂(k̂) from Eq. (16), this yields again Eq.

(18) with the modified momentum operator

(p/(k̂) −m)ψ = 0 . (20)

This equation is Lorentz invariant by construction. It contains in position representation 3rd

order derivatives in space coordinates and 3rd order time-derivatives. In our approximation, we can

solve the equation for a single order time derivative by using the energy condition E2 = p2 +m2.

This leads effectively to a replacement of time derivatives by space derivatives:

h̄ω̂ ≈ Ê − αÊ3/M2
f = Ê

(

1 − α
p̂ip̂i +m2

M2
f

)

. (21)

Inserting the modified Ê(ω) and p̂(k) and keeping only terms up to 3rd order, we obtain the

following expression of the Dirac Equation:

ω|ψ〉 ≈ γ0
(

γik̂i +
m

h̄

)

(

1 − α
h̄2k̂ik̂i +m2

M2
f

)

|ψ〉 . (22)

V. THE GYROMAGNETIC MOMENT

The task is now to derive the modifications of the anomalous gyromagnetic moment due to

the existence of a minimal length. Therefore we assume as usual the particle is placed inside a

homogeneous and static magnetic field B. Regarding the energy levels of an electron the magnetic

field leads to a splitting of the energetic degenerated values which is proportional to the magnetic

field B and the gyromagnetic moment g. Since the energy of the particle in the field is not modified

(see (18)) there is no modification of the splitting as one might have expected from the fact that

the particles spin is responsible for the anomaly.

However, if we look at the precession of a dipole in a magnetic field without minimal length

and compare its precession frequency to that of the spin 1/2 particle under investigation, again
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the factor g occurs. Without minimal length the frequency from quantum mechanics is two times

the classical one. In that case a further modification from the minimal length is expected, as has

been under investigation in an alternative approach in [55]. In our model, this modification results

from the new relation between energy and frequency.

Equation (22) with minimally coupled electromagnetic fields reads:

ω|ψ〉 ≈ γ0
(

γiK̂i +
m

h̄

)

(

1 − α
h̄2K̂iK̂i +m2

M2
f

)

|ψ〉 (23)

where K̂ = k̂ + eÂ/h̄. Higher derivatives acting on the magnetic potential can be dropped too for

a static and uniform field. In addition, the constant electric potential can be set to zero. In the

non-relativistic approximation we can simplify this equation in the Coulomb gauge to:

(

E +mF̂
)

|χ〉 =

(

(h̄K̂)2

2m
F̂ +

eh̄

2m
σB̂F̂

)

|χ〉 (24)

with

F̂ =

(

1 − α
h̄2K̂iK̂i +m2

M2
f

)

, |ψ〉 =

∣

∣

∣

∣

χ

φ

〉

. (25)

Here χ is the upper component of the Dirac spinor and σ denotes the Pauli matrices.

Therefore, the modified expression g̃ for the gyromagnetic moment for k → 0 is:

g̃ = g ·

(

1 − α
m2

M2
f

)

. (26)

The experimental data concerning the muon gyromagnetic moment are as follows: Davier and

collaborates provide two standard model theory results; they differ in the experimental input2 used

to the hadronic contributions [56]. It is convenient to use the quantity aµ = (g − 2)/2 to denote

the gyromagnetic factor of the muon:

aµ,τ = 11659195.6(11.1) × 10−10

aµ,e+e− = 11659180.9(9.7) × 10−10 .

The experimental ’world average’ is [57]:

aµ = 11659203(8) × 10−10 . (27)

2 The indices indicate the source of the vector spectral functions; they are obtained by either hadronic τ decays or

e
+

e
−-annihilation cross-sections.
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The results indicate that modifications to the standard model calculation have to be smaller

than 10−8. This leads to the following constraint on the fundamental scale of the theory:

Mf/
√

|α| ≥ 1 TeV . (28)

For the commonly used setting γ = 1 (α = 1/3), a specific limit on the fundamental scale Mf

can be obtained from present g − 2 data: Mf ≥ 577 GeV.

Note that there might further be corrections due to graviton loops [58, 59]. However, recent

calculations show that neither sign nor value of these corrections are predictable due to unknown

form-factors and cutoff parameters [60].

VI. SUMMARY

A phenomenological model, which combines both Large Extra Dimensions and the minimal

length scale Lf is studied. The existence of a minimal length scale leads to modifications of

quantum mechanics. With the recently proposed idea of Large Extra Dimensions, this new scale

might be in reach of present day experiments. The modified Dirac equation is used to derive first-

order deviations of the gyromagnetic moment of spin 1/2 particles. Our results for the muon g− 2

value are compared to the values predicted by QED and experiment.
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