2,465 research outputs found

    Housing Tenure, Uncertainty, and Taxation

    Get PDF
    Modern empirical work on the choice between renting and owning focuses on the concept of the "user cost" of housing, which integrates into a single measure the various components of housing costs. The standard approach implicitly assumes that households know the user cost of housing with certainty. However, the ex post user cost measure exhibits substantial variability over time, and it is highly unlikely that individuals believe themselves able to forecast these fluctuations with certainty. In this paper, we construct and estimate a model of the tenure choice that explicitly allows for the effects of uncertainty. The results suggest that previous work which ignored uncertainty may have overstated the effects of the income tax system upon the tenure choice.

    Heatshield material selection for advanced ballistic reentry vehicles

    Get PDF
    The Performance of staple rayon fiber and AVTEX continuous rayon fiber was evaluated as precursor materials for heatshields. The materials studied were referenced to the IRC FM5055A heatshield materials flown during the past decade. Three different arc jet facilities were used to simulate portions of the reentry environment. The IRC FM5055A and the AVTEX FM5055G, both continuous rayon fiber woven materials having the phenolic impregnant filled with carbon particles were compared. The AVTEX continuous fiber, unfilled material FM5822A was also examined to a limited extent. Test results show that the AVTEX FM5055G material provided a close substitute for the IRC FM5055A material both in terms of thermal protection and roll torque performance

    Functions preserving nonnegativity of matrices

    Full text link
    The main goal of this work is to determine which entire functions preserve nonnegativity of matrices of a fixed order nn -- i.e., to characterize entire functions ff with the property that f(A)f(A) is entrywise nonnegative for every entrywise nonnegative matrix AA of size n×nn\times n. Towards this goal, we present a complete characterization of functions preserving nonnegativity of (block) upper-triangular matrices and those preserving nonnegativity of circulant matrices. We also derive necessary conditions and sufficient conditions for entire functions that preserve nonnegativity of symmetric matrices. We also show that some of these latter conditions characterize the even or odd functions that preserve nonnegativity of symmetric matrices.Comment: 20 pages; expanded and corrected to reflect referees' remarks; to appear in SIAM J. Matrix Anal. App

    How Much Does Money Matter in a Direct Democracy?

    Get PDF
    The fine-structure splitting of quantum confined InxGa1-x Nexcitons is investigated using polarization-sensitive photoluminescence spectroscopy. The majority of the studied emission lines exhibits mutually orthogonal fine-structure components split by 100-340 mu eV, as measured from the cleaved edge of the sample. The exciton and the biexciton reveal identical magnitudes but reversed sign of the energy splitting.Original Publication:Supaluck Amloy, Y T Chen, K F Karlsson, K H Chen, H C Hsu, C L Hsiao, L C Chen and Per-Olof Holtz, Polarization-resolved fine-structure splitting of zero-dimensional InxGa1-xN excitons, 2011, PHYSICAL REVIEW B, (83), 20, 201307.http://dx.doi.org/10.1103/PhysRevB.83.201307Copyright: American Physical Societyhttp://www.aps.org

    Enhancement of the Binding Energy of Charged Excitons in Disordered Quantum Wires

    Full text link
    Negatively and positively charged excitons are identified in the spatially-resolved photoluminescence spectra of quantum wires. We demonstrate that charged excitons are weakly localized in disordered quantum wires. As a consequence, the enhancement of the "binding energy" of a charged exciton is caused, for a significant part, by the recoil energy transferred to the remaining charged carrier during its radiative recombination. We discover that the Coulomb correlation energy is not the sole origin of the "binding energy", in contrast to charged excitons confined in quantum dots.Comment: 4 Fig

    When Do People Trust Their Social Groups?

    Full text link
    Trust facilitates cooperation and supports positive outcomes in social groups, including member satisfaction, information sharing, and task performance. Extensive prior research has examined individuals' general propensity to trust, as well as the factors that contribute to their trust in specific groups. Here, we build on past work to present a comprehensive framework for predicting trust in groups. By surveying 6,383 Facebook Groups users about their trust attitudes and examining aggregated behavioral and demographic data for these individuals, we show that (1) an individual's propensity to trust is associated with how they trust their groups, (2) smaller, closed, older, more exclusive, or more homogeneous groups are trusted more, and (3) a group's overall friendship-network structure and an individual's position within that structure can also predict trust. Last, we demonstrate how group trust predicts outcomes at both individual and group level such as the formation of new friendship ties.Comment: CHI 201

    Efficient cosmological parameter sampling using sparse grids

    Full text link
    We present a novel method to significantly speed up cosmological parameter sampling. The method relies on constructing an interpolation of the CMB-log-likelihood based on sparse grids, which is used as a shortcut for the likelihood-evaluation. We obtain excellent results over a large region in parameter space, comprising about 25 log-likelihoods around the peak, and we reproduce the one-dimensional projections of the likelihood almost perfectly. In speed and accuracy, our technique is competitive to existing approaches to accelerate parameter estimation based on polynomial interpolation or neural networks, while having some advantages over them. In our method, there is no danger of creating unphysical wiggles as it can be the case for polynomial fits of a high degree. Furthermore, we do not require a long training time as for neural networks, but the construction of the interpolation is determined by the time it takes to evaluate the likelihood at the sampling points, which can be parallelised to an arbitrary degree. Our approach is completely general, and it can adaptively exploit the properties of the underlying function. We can thus apply it to any problem where an accurate interpolation of a function is needed.Comment: Submitted to MNRAS, 13 pages, 13 figure

    Electron Accumulation and Emergent Magnetism in LaMnO3/SrTiO3 Heterostructures

    Full text link
    Emergent phenomena at polar-nonpolar oxide interfaces have been studied intensely in pursuit of next-generation oxide electronics and spintronics. Here we report the disentanglement of critical thicknesses for electron reconstruction and the emergence of ferromagnetism in polar-mismatched LaMnO3/SrTiO3 (001) heterostructures. Using a combination of element-specific X-ray absorption spectroscopy and dichroism, and first-principles calculations, interfacial electron accumulation and ferromagnetism have been observed within the polar, antiferromagnetic insulator LaMnO3. Our results show that the critical thickness for the onset of electron accumulation is as thin as 2 unit cells (UC), significantly thinner than the observed critical thickness for ferromagnetism of 5 UC. The absence of ferromagnetism below 5 UC is likely induced by electron over-accumulation. In turn, by controlling the doping of the LaMnO3, we are able to neutralize the excessive electrons from the polar mismatch in ultrathin LaMnO3 films and thus enable ferromagnetism in films as thin as 3 UC, extending the limits of our ability to synthesize and tailor emergent phenomena at interfaces and demonstrating manipulation of the electronic and magnetic structures of materials at the shortest length scales.Comment: Accepted by Phys. Rev. Let
    corecore