2,465 research outputs found
Housing Tenure, Uncertainty, and Taxation
Modern empirical work on the choice between renting and owning focuses on the concept of the "user cost" of housing, which integrates into a single measure the various components of housing costs. The standard approach implicitly assumes that households know the user cost of housing with certainty. However, the ex post user cost measure exhibits substantial variability over time, and it is highly unlikely that individuals believe themselves able to forecast these fluctuations with certainty. In this paper, we construct and estimate a model of the tenure choice that explicitly allows for the effects of uncertainty. The results suggest that previous work which ignored uncertainty may have overstated the effects of the income tax system upon the tenure choice.
Heatshield material selection for advanced ballistic reentry vehicles
The Performance of staple rayon fiber and AVTEX continuous rayon fiber was evaluated as precursor materials for heatshields. The materials studied were referenced to the IRC FM5055A heatshield materials flown during the past decade. Three different arc jet facilities were used to simulate portions of the reentry environment. The IRC FM5055A and the AVTEX FM5055G, both continuous rayon fiber woven materials having the phenolic impregnant filled with carbon particles were compared. The AVTEX continuous fiber, unfilled material FM5822A was also examined to a limited extent. Test results show that the AVTEX FM5055G material provided a close substitute for the IRC FM5055A material both in terms of thermal protection and roll torque performance
Functions preserving nonnegativity of matrices
The main goal of this work is to determine which entire functions preserve
nonnegativity of matrices of a fixed order -- i.e., to characterize entire
functions with the property that is entrywise nonnegative for every
entrywise nonnegative matrix of size . Towards this goal, we
present a complete characterization of functions preserving nonnegativity of
(block) upper-triangular matrices and those preserving nonnegativity of
circulant matrices. We also derive necessary conditions and sufficient
conditions for entire functions that preserve nonnegativity of symmetric
matrices. We also show that some of these latter conditions characterize the
even or odd functions that preserve nonnegativity of symmetric matrices.Comment: 20 pages; expanded and corrected to reflect referees' remarks; to
appear in SIAM J. Matrix Anal. App
How Much Does Money Matter in a Direct Democracy?
The fine-structure splitting of quantum confined InxGa1-x Nexcitons is investigated using polarization-sensitive photoluminescence spectroscopy. The majority of the studied emission lines exhibits mutually orthogonal fine-structure components split by 100-340 mu eV, as measured from the cleaved edge of the sample. The exciton and the biexciton reveal identical magnitudes but reversed sign of the energy splitting.Original Publication:Supaluck Amloy, Y T Chen, K F Karlsson, K H Chen, H C Hsu, C L Hsiao, L C Chen and Per-Olof Holtz, Polarization-resolved fine-structure splitting of zero-dimensional InxGa1-xN excitons, 2011, PHYSICAL REVIEW B, (83), 20, 201307.http://dx.doi.org/10.1103/PhysRevB.83.201307Copyright: American Physical Societyhttp://www.aps.org
Experimental calibration and implications of olivine-melt vanadium oxybarometry for hydrous magmas from Muthnovsky volcano (Kamchatka)
Enhancement of the Binding Energy of Charged Excitons in Disordered Quantum Wires
Negatively and positively charged excitons are identified in the
spatially-resolved photoluminescence spectra of quantum wires. We demonstrate
that charged excitons are weakly localized in disordered quantum wires. As a
consequence, the enhancement of the "binding energy" of a charged exciton is
caused, for a significant part, by the recoil energy transferred to the
remaining charged carrier during its radiative recombination. We discover that
the Coulomb correlation energy is not the sole origin of the "binding energy",
in contrast to charged excitons confined in quantum dots.Comment: 4 Fig
When Do People Trust Their Social Groups?
Trust facilitates cooperation and supports positive outcomes in social
groups, including member satisfaction, information sharing, and task
performance. Extensive prior research has examined individuals' general
propensity to trust, as well as the factors that contribute to their trust in
specific groups. Here, we build on past work to present a comprehensive
framework for predicting trust in groups. By surveying 6,383 Facebook Groups
users about their trust attitudes and examining aggregated behavioral and
demographic data for these individuals, we show that (1) an individual's
propensity to trust is associated with how they trust their groups, (2)
smaller, closed, older, more exclusive, or more homogeneous groups are trusted
more, and (3) a group's overall friendship-network structure and an
individual's position within that structure can also predict trust. Last, we
demonstrate how group trust predicts outcomes at both individual and group
level such as the formation of new friendship ties.Comment: CHI 201
Efficient cosmological parameter sampling using sparse grids
We present a novel method to significantly speed up cosmological parameter
sampling. The method relies on constructing an interpolation of the
CMB-log-likelihood based on sparse grids, which is used as a shortcut for the
likelihood-evaluation. We obtain excellent results over a large region in
parameter space, comprising about 25 log-likelihoods around the peak, and we
reproduce the one-dimensional projections of the likelihood almost perfectly.
In speed and accuracy, our technique is competitive to existing approaches to
accelerate parameter estimation based on polynomial interpolation or neural
networks, while having some advantages over them. In our method, there is no
danger of creating unphysical wiggles as it can be the case for polynomial fits
of a high degree. Furthermore, we do not require a long training time as for
neural networks, but the construction of the interpolation is determined by the
time it takes to evaluate the likelihood at the sampling points, which can be
parallelised to an arbitrary degree. Our approach is completely general, and it
can adaptively exploit the properties of the underlying function. We can thus
apply it to any problem where an accurate interpolation of a function is
needed.Comment: Submitted to MNRAS, 13 pages, 13 figure
Electron Accumulation and Emergent Magnetism in LaMnO3/SrTiO3 Heterostructures
Emergent phenomena at polar-nonpolar oxide interfaces have been studied
intensely in pursuit of next-generation oxide electronics and spintronics. Here
we report the disentanglement of critical thicknesses for electron
reconstruction and the emergence of ferromagnetism in polar-mismatched
LaMnO3/SrTiO3 (001) heterostructures. Using a combination of element-specific
X-ray absorption spectroscopy and dichroism, and first-principles calculations,
interfacial electron accumulation and ferromagnetism have been observed within
the polar, antiferromagnetic insulator LaMnO3. Our results show that the
critical thickness for the onset of electron accumulation is as thin as 2 unit
cells (UC), significantly thinner than the observed critical thickness for
ferromagnetism of 5 UC. The absence of ferromagnetism below 5 UC is likely
induced by electron over-accumulation. In turn, by controlling the doping of
the LaMnO3, we are able to neutralize the excessive electrons from the polar
mismatch in ultrathin LaMnO3 films and thus enable ferromagnetism in films as
thin as 3 UC, extending the limits of our ability to synthesize and tailor
emergent phenomena at interfaces and demonstrating manipulation of the
electronic and magnetic structures of materials at the shortest length scales.Comment: Accepted by Phys. Rev. Let
- …
