253 research outputs found

    Effects of Nonlinear Dispersion Relations on Non-Gaussianities

    Full text link
    We investigate the effect of non-linear dispersion relations on the bispectrum. In particular, we study the case were the modified relations do not violate the WKB condition at early times, focusing on a particular example which is exactly solvable: the Jacobson-Corley dispersion relation with quartic correction with positive coefficient to the squared linear relation. We find that the corrections to the standard result for the bispectrum are suppressed by a factor H2pc2\frac{H^2}{p_c^2} where pcp_c is the scale where the modification to the dispersion relation becomes relevant. The modification is {\it mildly} configuration-dependent and equilateral configurations are more suppressed with respect to the local ones, by a factor of one percent. There is no configuration leading to enhancements. We then analyze the results in the framework of particle creation using the approximate gluing method of Brandenberger and Martin, which relates more directly to the modeling of the trans-Planckian physics via modifications of the vacuum at a certain cutoff scale. We show that the gluing method overestimates the leading order correction to the spectrum and bispectrum by one and two orders, respectively, in Hpc\frac{H}{p_c}. We discuss the various approximation and conclude that for dispersion relations not violating WKB at early times the particle creation is small and does not lead to enhanced contributions to the bispectrum. We also show that in many cases enhancements do not occur when modeling the trans-Planckian physics via modifications of the vacuum at a certain cutoff scale. Most notably they are only of order O(1) when the Bogolyubov coefficients accounting for particle creation are determined by the Wronskian condition and the minimization of the uncertainty between the field and its conjugate momentum.Comment: v1: 11 pages, 2 figures; v2: references update

    The distribution of transit durations for Kepler planet candidates and implications for their orbital eccentricities

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyDoppler planet searches have discovered that giant planets follow orbits with a wide range of orbital eccentricities, revolutionizing theories of planet formation. The discovery of hundreds of exoplanet candidates by NASA's Kepler mission enables astronomers to characterize the eccentricity distribution of small exoplanets. Measuring the eccentricity of individual planets is only practical in favorable cases that are amenable to complementary techniques (e.g., radial velocities, transit timing variations, occultation photometry). Yet even in the absence of individual eccentricities, it is possible to study the distribution of eccentricities based on the distribution of transit durations (relative to the maximum transit duration for a circular orbit). We analyze the transit duration distribution of Kepler planet candidates. We find that for host stars with T > 5100 K we cannot invert this to infer the eccentricity distribution at this time due to uncertainties and possible systematics in the host star densities. With this limitation in mind, we compare the observed transit duration distribution with models to rule out extreme distributions. If we assume a Rayleigh eccentricity distribution for Kepler planet candidates, then we find best fits with a mean eccentricity of 0.1-0.25 for host stars with T ≤ 5100 K. We compare the transit duration distribution for different subsets of Kepler planet candidates and discuss tentative trends with planetary radius and multiplicity. High-precision spectroscopic follow-up observations for a large sample of host stars will be required to confirm which trends are real and which are the results of systematic errors in stellar radii. Finally, we identify planet candidates that must be eccentric or have a significantly underestimated stellar radius.Peer reviewedFinal Accepted Versio

    Conditions for Successful Extended Inflation

    Full text link
    We investigate, in a model-independent way, the conditions required to obtain a satisfactory model of extended inflation in which inflation is brought to an end by a first-order phase transition. The constraints are that the correct present strength of the gravitational coupling is obtained, that the present theory of gravity is satisfactorily close to general relativity, that the perturbation spectra from inflation are compatible with large scale structure observations and that the bubble spectrum produced at the phase transition doesn't conflict with the observed level of microwave background anisotropies. We demonstrate that these constraints can be summarized in terms of the behaviour in the conformally related Einstein frame, and can be compactly illustrated graphically. We confirm the failure of existing models including the original extended inflation model, and construct models, albeit rather contrived ones, which satisfy all existing constraints.Comment: 8 pages RevTeX file with one figure incorporated (uses RevTeX and epsf). Also available by e-mailing ARL, or by WWW at http://star-www.maps.susx.ac.uk/papers/infcos_papers.html; Revised to include extra references, results unchanged, to appear Phys Rev

    The CMB Bispectrum

    Full text link
    We use a separable mode expansion estimator with WMAP data to estimate the bispectrum for all the primary families of non-Gaussian models. We review the late-time mode expansion estimator methodology which can be applied to any non-separable primordial and CMB bispectrum model, and we demonstrate how the method can be used to reconstruct the CMB bispectrum from an observational map. We extend the previous validation of the general estimator using local map simulations. We apply the estimator to the coadded WMAP 5-year data, reconstructing the WMAP bispectrum using l<500l<500 multipoles and n=31n=31 orthonormal 3D eigenmodes. We constrain all popular nearly scale-invariant models, ensuring that the theoretical bispectrum is well-described by a convergent mode expansion. Constraints from the local model \fnl=54.4\pm 29.4 and the equilateral model \fnl=143.5\pm 151.2 (\Fnl = 25.1\pm 26.4) are consistent with previously published results. (Here, we use a nonlinearity parameter \Fnl normalised to the local case, to allow more direct comparison between different models.) Notable new constraints from our method include those for the constant model \Fnl = 35.1 \pm 27.4 , the flattened model \Fnl = 35.4\pm 29.2, and warm inflation \Fnl = 10.3\pm 27.2. We investigate feature models surveying a wide parameter range in both the scale and phase, and we find no significant evidence of non-Gaussianity in the models surveyed. We propose a measure \barFnl for the total integrated bispectrum and find that the measured value is consistent with the null hypothesis that CMB anisotropies obey Gaussian statistics. We argue that this general bispectrum survey with the WMAP data represents the best evidence for Gaussianity to date and we discuss future prospects, notably from the Planck satellite

    RS1 Cosmology as Brane Dynamics in an AdS/Schwarzschild Bulk

    Get PDF
    We explore various facets of the cosmology of the Randall-Sundrum scenario with two branes by considering the dynamics of the branes moving in a bulk AdS/Schwarzschild geometry. This approach allows us both to understand in more detail and from a different perspective the role of the stabilization of the hierarchy in the brane cosmology, as well as to extend to the situation where the metric contains a horizon. In particular, we explicitly determine how the Goldberger-Wise stabilization mechanism perturbs the background bulk geometry to produce a realistic cosmology.Comment: 9 pages, uses ReVTeX, no figure

    Enhanced local-type inflationary trispectrum from a non-vacuum initial state

    Get PDF
    We compute the primordial trispectrum for curvature perturbations produced during cosmic inflation in models with standard kinetic terms, when the initial quantum state is not necessarily the vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for configuration in which one of the momenta, say k3k_3, is much smaller than the others, k3k1,2,4k_3 \ll k_{1,2,4}. For those squeezed configurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values of order ϵ(k1/k3)2 \epsilon ({k_1}/{k_3})^2. This amplitude can be larger than the prediction of the so-called Maldacena consistency relation by a factor 10610^6, and can reach the sensitivity of forthcoming observations, even for single-field inflationary models.Comment: 11 pages, 1 figure. References added, typos corrected, minor change

    N-body simulations with generic non-Gaussian initial conditions I: Power Spectrum and halo mass function

    Get PDF
    We address the issue of setting up generic non-Gaussian initial conditions for N-body simulations. We consider inflationary-motivated primordial non-Gaussianity where the perturbations in the Bardeen potential are given by a dominant Gaussian part plus a non-Gaussian part specified by its bispectrum. The approach we explore here is suitable for any bispectrum, i.e. it does not have to be of the so-called separable or factorizable form. The procedure of generating a non-Gaussian field with a given bispectrum (and a given power spectrum for the Gaussian component) is not univocal, and care must be taken so that higher-order corrections do not leave a too large signature on the power spectrum. This is so far a limiting factor of our approach. We then run N-body simulations for the most popular inflationary-motivated non-Gaussian shapes. The halo mass function and the non-linear power spectrum agree with theoretical analytical approximations proposed in the literature, even if they were so far developed and tested only for a particular shape (the local one). We plan to make the simulations outputs available to the community via the non-Gaussian simulations comparison project web site http://icc.ub.edu/~liciaverde/NGSCP.html.Comment: 23 pages, 10 figure

    Signatures of very high energy physics in the squeezed limit of the bispectrum (violation of Maldacena's condition)

    Full text link
    We investigate the signatures in the squeezed limit of the primordial scalar bispectrum due to modifications of the standard theory at high energy. In particular, we consider the cases of modified dispersion relations and/or modified initial quantum state (both in the Boundary Effective Field Theory and in the New Physics Hyper-Surface formulations). Using the in-in formalism we study in details the squeezed limit of the contributions to the bispectrum from all possible cubic couplings in the effective theory of single-field inflation. We find general features such as enhancements and/or non-local shape of the non-Gaussianities, which are relevant, for example, for measurements of the halo bias and which distinguish these scenarios from the standard one (with Bunch-Davies vacuum as initial state and standard kinetic terms). We find that the signatures change according to the magnitude of the scale of new physics, and therefore several pieces of information regarding high energy physics could be obtained in case of detection of these signals, especially bounds on the scales of new physics.Comment: 37 pages plus bibliography, version matching the one accepted for publication by JCAP. Increased pedagogical comments, improved presentation and text, added reference

    Non-Gaussianity in the Cosmic Microwave Background Anisotropies at Recombination in the Squeezed limit

    Get PDF
    We estimate analytically the second-order cosmic microwave background temperature anisotropies at the recombination epoch in the squeezed limit and we deduce the contamination to the primordial local non-Gaussianity. We find that the level of contamination corresponds to f_NL^{con}=O(1) which is below the sensitivity of present experiments and smaller than the value O(5) recently claimed in the literature.Comment: LaTeX file; 15 pages. Slightly revised version. Main result unchange

    N=1 Supergravity Chaotic Inflation in the Braneworld Scenario

    Full text link
    We study a N=1 Supergravity chaotic inflationary model, in the context of the braneworld scenario. It is shown that successful inflation and reheating consistent with phenomenological constraints can be achieved via the new terms in the Friedmann equation arising from brane physics. Interestingly, the model satisfies observational bounds with sub-Planckian field values, implying that chaotic inflation on the brane is free from the well known difficulties associated with the presence of higher order non-renormalizable terms in the superpotential. A bound on the mass scale of the fifth dimension, M_5 \gsim 1.3 \times 10^{-6} M_P, is obtained from the requirement that the reheating temperature be higher than the temperature of the electroweak phase transition.Comment: 5 pages, 1 Table, Revtex
    corecore