220 research outputs found

    Challenging the foundations of the clinical model of foot function : further evidence that the Root model assessments fail to appropriately classify foot function

    Get PDF
    Background The Root model of normal and abnormal foot function remains the basis for clinical foot orthotic practice globally. Our aim was to investigate the relationship between foot deformities and kinematic compensations that are the foundations of the model. Methods A convenience sample of 140 were screened and 100 symptom free participants aged 18-45 years were invited to participate. The static biomechanical assessment described by the Root model was used to identify five foot deformities. A 6 segment foot model was used to measure foot kinematics during gait. Statistical tests compared foot kinematics between feet with and without foot deformities and correlated the degree of deformity with any compensatory motions. Results None of the deformities proposed by the Root model were associated with distinct differences in foot kinematics during gait when compared to those without deformities or each other. Static and dynamic parameters were not correlated. Conclusions Taken as part of a wider body of evidence, the results of this study have profound implications for clinical foot health practice. We believe that the assessment protocol advocated by the Root model is no longer a suitable basis for professional practice. We recommend that clinicians stop using sub-talar neutral position during clinical assessments and stop assessing the non-weight bearing range of ankle dorsiflexion, first ray position and forefoot alignments and movement as a means of defining the associated foot deformities. The results question the relevance of the Root assessments in the prescription of foot orthoses

    Energy flow analysis of amputee walking shows a proximally-directed transfer of energy in intact limbs, compared to a distally-directed transfer in prosthetic limbs at push-off

    Get PDF
    Reduced capacity and increased metabolic cost of walking occurs in amputees, despite advances in prosthetic componentry. Joint powers can quantify deficiencies in prosthetic gait, but do not reveal how energy is exchanged between limb segments. This study aimed to quantify these energy exchanges during amputee walking. Optical motion and forceplate data collected during walking at a self-selected speed for cohorts of 10 controls, 10 unilateral trans-tibial, 10 unilateral trans-femoral and 10 bilateral trans-femoral amputees were used to determine the energy exchanges between lower limb segments. At push-off, consistent thigh and shank segment powers were observed between amputee groups (1.12W/kg vs. 1.05W/kg for intact limbs and 0.97W/kg vs. 0.99W/kg for prosthetic limbs), and reduced prosthetic ankle power, particularly in trans-femoral amputees (3.12W/kg vs. 0.87W/kg). Proximally-directed energy exchange was observed in the intact limbs of amputees and controls, while prosthetic limbs displayed distally-directed energy exchanges at the knee and hip. This study used energy flow analysis to show a reversal in the direction in which energy is exchanged between prosthetic limb segments at push-off. This reversal was required to provide sufficient energy to propel the limb segments and is likely a direct result of the lack of push-off power at the prosthetic ankle, particularly in trans-femoral amputees, and leads to their increased metabolic cost of walking

    Higher knee contact forces might underlie increased osteoarthritis rates in high functioning amputees: A pilot study

    Get PDF
    © 2020 The Authors. Journal of Orthopaedic Research® published by Wiley Periodicals LLC on behalf of Orthopaedic Research Society High functioning military transtibial amputees (TTAs) with well-fitted state of the art prosthetics have gait that is indistinguishable from healthy individuals, yet they are more likely to develop knee osteoarthritis (OA) of their intact limbs. This contrasts with the information at the knees of the amputated limbs that have been shown to be at a significantly reduced risk of pain and OA. The hypothesis of this study is that biomechanics can explain the difference in knee OA risk. Eleven military unilateral TTAs and eleven matched healthy controls underwent gait analysis. Muscle forces and joint contact forces at the knee were quantified using musculoskeletal modeling, validated using electromyography measurements. Peak knee contact forces for the intact limbs on both the medial and lateral compartments were significantly greater than the healthy controls (P ≤.006). Additionally, the intact limbs had greater peak semimembranosus (P =.001) and gastrocnemius (P ≤.001) muscle forces compared to the controls. This study has for the first time provided robust evidence of increased force on the non-affected knees of high functioning TTAs that supports the mechanically based hypothesis to explain the documented higher risk of knee OA in this patient group. The results suggest several protentional strategies to mitigate knee OA of the intact limbs, which may include the improvements of the prosthetic foot control, socket design, and strengthening of the amputated muscles

    The gait profile score characterises walking performance impairments in young stroke survivors

    Get PDF
    Background: The Gait Profile Score (GPS) provides a composite measure of the quality of joint movement during walking, but the relationship between this measure and metabolic cost, temporal (e.g. walking speed) and spatial (e.g. stride length) parameters in stroke survivors has not been reported. Research Question: The aims of this study were to compare the GPS (paretic, non-paretic, and overall score) of young stroke survivors to the healthy able-bodied control and determine the relationship between the GPS and metabolic cost, temporal (walking speed, stance time asymmetry) and spatial (stride length, stride width, step length asymmetry) parameters in young stroke survivors to understand whether the quality of walking affects walking performance in stroke survivors. Methods: Thirty-nine young stroke survivors aged between 18 and 65years and 15 healthy age-matched able-bodied controls were recruited from six hospital sites in Wales, UK. Joint range of motion at the pelvis, hip, knee and ankle, and temporal and spatial parameters were measured during walking on level ground at self-selected speed with calculation of the Gait Variable Score and then the GPS. Results: GPS for the paretic leg (9.40° (8.60–10.21) p < 0.001), non-paretic leg (11.42° (10.20–12.63) p < 0.001) and overall score (11.18° (10.26–12.09) p < 0.001)) for stroke survivors were significantly higher than the control (4.25° (3.40–5.10), 5.92° (5.11 (6.73)). All parameters with the exception of step length symmetry ratio correlated moderate to highly with the GPS for the paretic, non-paretic, and/or overall score (ρ = <−0.732 (p < 0.001)). Significance: The quality of joint movement during walking measured via the GPS is directly related to the speed and efficiency of walking, temporal (stance time symmetry) and spatial (stride length, stride width) parameters in young stroke survivors

    Implementation of Fourier transform infrared spectroscopy for the rapid typing of uropathogenic Escherichia coli.

    Get PDF
    In this paper, we demonstrate that Fourier transform infrared (FT-IR) spectroscopy is able to discriminate rapidly between uropathogenic Escherichia coli (UPEC) of key lineages with only relatively simple sample preparation. A total of 95 bacteria from six different epidemiologically important multilocus sequence types (ST10, ST69, ST95, ST73, ST127 and ST131) were used in this project and principal component-discriminant function analysis (PC-DFA) of these samples produced clear separate clustering of isolates, based on the ST. Analysis of data using partial least squares-discriminant analysis (PLS-DA), incorporating cross-validation, indicated a high prediction accuracy of 91.19% for ST131. These results suggest that FT-IR spectroscopy could be a useful method for the rapid identification of members of important UPEC STs

    ‘Trial and error…’, ‘…happy patients’ and ‘…an old toy in the cupboard’: a qualitative investigation of factors that influence practitioners in their prescription of foot orthoses

    Get PDF
    Background: Foot orthoses are used to manage of a plethora of lower limb conditions. However, whilst the theoretical foundations might be relatively consistent, actual practices and therefore the experience of patients is likely to be less so. The factors that affect the prescription decisions that practitioners make about individual patients is unknown and hence the way in which clinical experience interacts with knowledge from training is not understood. Further, other influences on orthotic practice may include the adoption (or not) of technology. Hence the aim of this study was to explore, for the first time, the influences on orthotic practice. Methods: A qualitative approach was adopted utilising two focus groups (16 consenting participants in total; 15 podiatrists and 1 orthotist) in order to collect the data. An opening question “What factors influence your orthotic practice?” was followed with trigger questions, which were used to maintain focus. The dialogue was recorded digitally, transcribed verbatim and a thematic framework was used to analyse the data. Results: There were five themes: (i) influences on current practice, (ii) components of current practice, (iii) barriers to technology being used in clinical practice, (iv) how technology could enhance foot orthoses prescription and measurement of outcomes, and (v) how technology could provide information for practitioners and patients. A final global theme was agreed by the researchers and the participants: ‘Current orthotic practice is variable and does not embrace technology as it is perceived as being not fit for purpose in the clinical environment. However, practitioners do have a desire for technology that is usable and enhances patient focussed assessment, the interventions, the clinical outcomes and the patient’s engagement throughout these processes’. Conclusions: In relation to prescribing foot orthoses, practice varies considerably due to multiple influences. Measurement of outcomes from orthotic practice is a priority but there are no current norms for achieving this. There have been attempts by practitioners to integrate technology into their practice, but with largely negative experiences. The process of technology development needs to improve and have a more practice, rather than technology focus

    Return to Employment After Stroke in Young Adults: How Important Is the Speed and Energy Cost of Walking?

    Get PDF
    Background and Purpose- A quarter of individuals who experience a stroke are under the age of 65 years (defined as young adults), and up to 44% will be unable to return to work poststroke, predominantly because of walking difficulties. No research study has comprehensively analyzed walking performance in young adult's poststroke. The primary aim of this study is to investigate how a stroke in young adults affects walking performance (eg, walking speed and metabolic cost) compared with healthy age-matched controls. The secondary aim is to determine the predictive ability of walking performance parameters for return to employment poststroke. Methods- Forty-six individuals (18-40 years: n=6, 41-54 years: n=21, 55-65 years: n=19) who have had a stroke and 15 healthy age-matched able-bodied controls were recruited from 6 hospital sites in Wales, United Kingdom. Type, location, cause of stroke, and demographic factors (eg, employment status) were recorded. Temporal and spatial walking parameters were measured using 3-dimensional gait analysis. Metabolic energy expenditure and metabolic cost of walking were captured during 3 minutes of walking at self-selected speed from measurements of oxygen consumption. Results- Stroke participants walked slower (P<0.004) and less efficiently (P<0.002) than the controls. Only 23% of stroke participants returned to employment poststroke. Walking speed was the strongest predictor (sensitivity, 0.90; specificity, 0.82) for return to work (P=0.004) with a threshold of 0.93 m/s identified: individuals able to walk faster than 0.93 m/s were significantly more likely to return to work poststroke than those who walked slower than this threshold. Conclusions- This study is the first to capture walking performance parameters of young adults who have had a stroke and identifies slower and less efficient walking. Walking speed emerged as the strongest predictor for return to employment. It is recommended that walking speed be used as a simple but sensitive clinical indicator of functional performance to guide rehabilitation and inform readiness for return to work poststroke

    Formation of Sclerotia and Production of Indoloterpenes by Aspergillus niger and Other Species in Section Nigri

    Get PDF
    Several species in Aspergillus section Nigri have been reported to produce sclerotia on well-known growth media, such as Czapek yeast autolysate (CYA) agar, with sclerotia considered to be an important prerequisite for sexual development. However Aspergillus niger sensu stricto has not been reported to produce sclerotia, and is thought to be a purely asexual organism. Here we report, for the first time, the production of sclerotia by certain strains of Aspergillus niger when grown on CYA agar with raisins, or on other fruits or on rice. Up to 11 apolar indoloterpenes of the aflavinine type were detected by liquid chromatography and diode array and mass spectrometric detection where sclerotia were formed, including 10,23-dihydro-24,25-dehydroaflavinine. Sclerotium induction can thus be a way of inducing the production of new secondary metabolites from previously silent gene clusters. Cultivation of other species of the black aspergilli showed that raisins induced sclerotium formation by A. brasiliensis, A. floridensis A. ibericus, A. luchuensis, A. neoniger, A. trinidadensis and A. saccharolyticus for the first time

    A Potential Neural Substrate for Processing Functional Classes of Complex Acoustic Signals

    Get PDF
    Categorization is essential to all cognitive processes, but identifying the neural substrates underlying categorization processes is a real challenge. Among animals that have been shown to be able of categorization, songbirds are particularly interesting because they provide researchers with clear examples of categories of acoustic signals allowing different levels of recognition, and they possess a system of specialized brain structures found only in birds that learn to sing: the song system. Moreover, an avian brain nucleus that is analogous to the mammalian secondary auditory cortex (the caudo-medial nidopallium, or NCM) has recently emerged as a plausible site for sensory representation of birdsong, and appears as a well positioned brain region for categorization of songs. Hence, we tested responses in this non-primary, associative area to clear and distinct classes of songs with different functions and social values, and for a possible correspondence between these responses and the functional aspects of songs, in a highly social songbird species: the European starling. Our results clearly show differential neuronal responses to the ethologically defined classes of songs, both in the number of neurons responding, and in the response magnitude of these neurons. Most importantly, these differential responses corresponded to the functional classes of songs, with increasing activation from non-specific to species-specific and from species-specific to individual-specific sounds. These data therefore suggest a potential neural substrate for sorting natural communication signals into categories, and for individual vocal recognition of same-species members. Given the many parallels that exist between birdsong and speech, these results may contribute to a better understanding of the neural bases of speech
    • …
    corecore