226 research outputs found
Spontaneous Voice Gender Imitation Abilities in Adult Speakers
Background
The frequency components of the human voice play a major role in signalling the gender of the speaker. A voice imitation study was conducted to investigate individuals' ability to make behavioural adjustments to fundamental frequency (F0), and formants (Fi) in order to manipulate their expression of voice gender.
Methodology/Principal Findings
Thirty-two native British-English adult speakers were asked to read out loud different types of text (words, sentence, passage) using their normal voice and then while sounding as âmasculineâ and âfeminineâ as possible. Overall, the results show that both men and women raised their F0 and Fi when feminising their voice, and lowered their F0 and Fi when masculinising their voice.
Conclusions/Significance
These observations suggest that adult speakers are capable of spontaneous glottal and vocal tract length adjustments to express masculinity and femininity in their voice. These results point to a âgender codeâ, where speakers make a conventionalized use of the existing sex dimorphism to vary the expression of their gender and gender-related attributes
Prevalence of anatomical variants and coronary anomalies in 543 consecutive patients studied with 64-slice CT coronary angiography
The aim of our study was to assess the prevalence of variants and anomalies of the coronary artery tree in patients who underwent 64-slice computed tomography coronary angiography (CT-CA) for suspected or known coronary artery disease. A total of 543 patients (389 male, mean age 60.5â±â10.9) were reviewed for coronary artery variants and anomalies including post-processing tools. The majority of segments were identified according to the American Heart Association scheme. The coronary dominance pattern results were: right, 86.6%; left, 9.2%; balanced, 4.2%. The left main coronary artery had a mean length of 112â±â55 mm. The intermediate branch was present in the 21.9%. A variable number of diagonals (one, 25%; two, 49.7%; more than two, 24%; none, 1.3%) and marginals (one, 35.2%; two, 46.2%; more than two, 18%; none, 0.6%) was visualized. Furthermore, CT-CA may visualize smaller branches such as the conus branch artery (98%), the sinus node artery (91.6%), and the septal branches (93%). Single or associated coronary anomalies occurred in 18.4% of the patients, with the following distribution: 43 anomalies of origin and course, 68 intrinsic anomalies (59 myocardial bridging, nine aneurisms), three fistulas. In conclusion, 64-slice CT-CA provides optimal visualization of the variable and complex anatomy of coronary arteries because of the improved isotropic spatial resolution and flexible post-processing tool
Competing magnetostructural phases in a semiclassical system
The interplay between charge, structure, and magnetism gives rise to rich phase diagrams in complex materials with exotic properties emerging when phases compete. Molecule-based materials are particularly advantageous in this regard due to their low energy scales, flexible lattices, and chemical tunability. Here, we bring together high pressure Raman scattering, modeling, and first principles calculations to reveal the pressure-temperature-magnetic field phase diagram of Mn[N(CN)2]2. We uncover how hidden soft modes involving octahedral rotations drive two pressure-induced transitions triggering the low ??? high magnetic anisotropy crossover and a unique reorientation of exchange planes. These magnetostructural transitions and their mechanisms highlight the importance of spin-lattice interactions in establishing phases with novel magnetic properties in Mn(II)-containing systems
Vertical Distribution of Epibenthic Freshwater Cyanobacterial Synechococcus spp. Strains Depends on Their Ability for Photoprotection
Epibenthic cyanobacteria often grow in environments where the fluctuation of light intensity and quality is extreme and frequent. Different strategies have been developed to cope with this problem depending on the distribution of cyanobacteria in the water column. and either constant or enhanced levels of carotenoids were assayed in phycocyanin-rich strains collected from 1.0 and 0.5 m water depths. Protein analysis revealed that while the amount of biliproteins remained constant in all strains during light stress and recovery, the amount of D1 protein from photosystem II reaction centre was strongly reduced under light stress conditions in strains from 7.0 m and 1.0 m water depth, but not in strains collected from 0.5 m depth. spp. strains, depending on their genetically fixed mechanisms for photoprotection
Increased peri-ductal collagen micro-organization may contribute to raised mammographic density
BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54â66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Massonâs trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80Â ÎŒm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-015-0664-2) contains supplementary material, which is available to authorized users
Minimising impairment: Protocol for a multicentre randomised controlled trial of upper limb orthoses for children with cerebral palsy.
BACKGROUND: Upper limb orthoses are frequently prescribed for children with cerebral palsy (CP) who have muscle overactivity predominantly due to spasticity, with little evidence of long-term effectiveness. Clinical consensus is that orthoses help to preserve range of movement: nevertheless, they can be complex to construct, expensive, uncomfortable and require commitment from parents and children to wear. This protocol paper describes a randomised controlled trial to evaluate whether long-term use of rigid wrist/hand orthoses (WHO) in children with CP, combined with usual multidisciplinary care, can prevent or reduce musculoskeletal impairments, including muscle stiffness/tone and loss of movement range, compared to usual multidisciplinary care alone. METHODS/DESIGN: This pragmatic, multicentre, assessor-blinded randomised controlled trial with economic analysis will recruit 194 children with CP, aged 5-15 years, who present with flexor muscle stiffness of the wrist and/or fingers/thumb (Modified Ashworth Scale score =1). Children, recruited from treatment centres in Victoria, New South Wales and Western Australia, will be randomised to groups (1:1 allocation) using concealed procedures. All children will receive care typically provided by their treating organisation. The treatment group will receive a custom-made serially adjustable rigid WHO, prescribed for 6Â h nightly (or daily) to wear for 3Â years. An application developed for mobile devices will monitor WHO wearing time and adverse events. The control group will not receive a WHO, and will cease wearing one if previously prescribed. Outcomes will be measured 6 monthly over a period of 3Â years. The primary outcome is passive range of wrist extension, measured with fingers extended using a goniometer at 3Â years. Secondary outcomes include muscle stiffness, spasticity, pain, grip strength and hand deformity. Activity, participation, quality of life, cost and cost-effectiveness will also be assessed. DISCUSSION: This study will provide evidence to inform clinicians, services, funding agencies and parents/carers of children with CP whether the provision of a rigid WHO to reduce upper limb impairment, in combination with usual multidisciplinary care, is worth the effort and costs. TRIAL REGISTRATION: ANZ Clinical Trials Registry: U1111-1164-0572
Developmental Patterns of Doublecortin Expression and White Matter Neuron Density in the Postnatal Primate Prefrontal Cortex and Schizophrenia
Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (nâ=â37) and matched controls (nâ=â37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia
Transmission of Mitochondrial DNA Diseases and Ways to Prevent Them
Recent reports of strong selection of mitochondrial DNA (mtDNA) during transmission in animal models of mtDNA disease, and of nuclear transfer in both animal models and humans, have important scientific implications. These are directly applicable to the genetic management of mtDNA disease. The risk that a mitochondrial disorder will be transmitted is difficult to estimate due to heteroplasmyâthe existence of normal and mutant mtDNA in the same individual, tissue, or cell. In addition, the mtDNA bottleneck during oogenesis frequently results in dramatic and unpredictable inter-generational fluctuations in the proportions of mutant and wild-type mtDNA. Pre-implantation genetic diagnosis (PGD) for mtDNA disease enables embryos produced by in vitro fertilization (IVF) to be screened for mtDNA mutations. Embryos determined to be at low risk (i.e., those having low mutant mtDNA load) can be preferentially transferred to the uterus with the aim of initiating unaffected pregnancies. New evidence that some types of deleterious mtDNA mutations are eliminated within a few generations suggests that women undergoing PGD have a reasonable chance of generating embryos with a lower mutant load than their own. While nuclear transfer may become an alternative approach in future, there might be more difficulties, ethical as well as technical. This Review outlines the implications of recent advances for genetic management of these potentially devastating disorders
Precision measurement of violation in the penguin-mediated decay
A flavor-tagged time-dependent angular analysis of the decay
is performed using collision data collected
by the LHCb experiment at % at TeV, the center-of-mass energy of
13 TeV, corresponding to an integrated luminosity of 6 fb^{-1}. The
-violating phase and direct -violation parameter are measured
to be rad and
, respectively, assuming the same values
for all polarization states of the system. In these results, the
first uncertainties are statistical and the second systematic. These parameters
are also determined separately for each polarization state, showing no evidence
for polarization dependence. The results are combined with previous LHCb
measurements using collisions at center-of-mass energies of 7 and 8 TeV,
yielding rad and . This is the most precise study of time-dependent violation
in a penguin-dominated meson decay. The results are consistent with
symmetry and with the Standard Model predictions.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2023-001.html (LHCb
public pages
- âŠ