2,050 research outputs found

    Cellular biology of fracture healing

    Full text link
    The biology of bone healing is a rapidly developing science. Advances in transgenic and gene‐targeted mice have enabled tissue and cell‐specific investigations of skeletal regeneration. As an example, only recently has it been recognized that chondrocytes convert to osteoblasts during healing bone, and only several years prior, seminal publications reported definitively that the primary tissues contributing bone forming cells during regeneration were the periosteum and endosteum. While genetically modified animals offer incredible insights into the temporal and spatial importance of various gene products, the complexity and rapidity of healing—coupled with the heterogeneity of animal models—renders studies of regenerative biology challenging. Herein, cells that play a key role in bone healing will be reviewed and extracellular mediators regulating their behavior discussed. We will focus on recent studies that explore novel roles of inflammation in bone healing, and the origins and fates of various cells in the fracture environment. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop ResAdvances in transgenic and gene‐targeted mice have enabled tissue and cell‐specific investigation of skeletal regeneration. While genetically modified animals offer incredible insights into the temporal and spatial importance of various molecules, the complexity and rapidity of healing renders studies of regenerative biology challenging. Herein, cells and extracellular mediators that play a key role in bone healing are reviewed. We will focus on recent studies that explore the origins and fates of various cells in the fracture environment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148261/1/jor24170_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148261/2/jor24170-sup-0002-SuppTab-S2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148261/3/jor24170-sup-0001-SuppTab-S1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148261/4/jor24170.pd

    miRNA signature associated with outcome of gastric cancer patients following chemotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identification of patients who likely will or will not benefit from cytotoxic chemotherapy through the use of biomarkers could greatly improve clinical management by better defining appropriate treatment options for patients. microRNAs may be potentially useful biomarkers that help guide individualized therapy for cancer because microRNA expression is dysregulated in cancer. In order to identify miRNA signatures for gastric cancer and for predicting clinical resistance to cisplatin/fluorouracil (CF) chemotherapy, a comprehensive miRNA microarray analysis was performed using endoscopic biopsy samples.</p> <p>Methods</p> <p>Biopsy samples were collected prior to chemotherapy from 90 gastric cancer patients treated with CF and from 34 healthy volunteers. At the time of disease progression, post-treatment samples were additionally collected from 8 clinical responders. miRNA expression was determined using a custom-designed Agilent microarray. In order to identify a miRNA signature for chemotherapy resistance, we correlated miRNA expression levels with the time to progression (TTP) of disease after CF therapy.</p> <p>Results</p> <p>A miRNA signature distinguishing gastric cancer from normal stomach epithelium was identified. 30 miRNAs were significantly inversely correlated with TTP whereas 28 miRNAs were significantly positively correlated with TTP of 82 cancer patients (<it>P</it><0.05). Prominent among the upregulated miRNAs associated with chemosensitivity were miRNAs known to regulate apoptosis, including let-7g, miR-342, miR-16, miR-181, miR-1, and miR-34. When this 58-miRNA predictor was applied to a separate set of pre- and post-treatment tumor samples from the 8 clinical responders, all of the 8 pre-treatment samples were correctly predicted as low-risk, whereas samples from the post-treatment tumors that developed chemoresistance were predicted to be in the high-risk category by the 58 miRNA signature, suggesting that selection for the expression of these miRNAs occurred as chemoresistance arose.</p> <p>Conclusions</p> <p>We have identified 1) a miRNA expression signature that distinguishes gastric cancer from normal stomach epithelium from healthy volunteers, and 2) a chemoreresistance miRNA expression signature that is correlated with TTP after CF therapy. The chemoresistance miRNA expression signature includes several miRNAs previously shown to regulate apoptosis <it>in vitro</it>, and warrants further validation.</p

    Robust control of an evaporator through algebraic Riccati equations and d-k iteration

    Get PDF
    Evaporation is a process that is widely used in the chemical industry and aims to concentrate a solution consisting of a non-volatile solute and a volatile solvent. In this paper the design of robust control systems for a simple effect evaporation system is presented. Two controllers were designed, the first was based on the Algebraic Riccati Equations (ARE) solutions technique and the second was derived from the D-K iteration method. To show the potentiality of the control system proposed, we present the results of some tests carried out in simulation

    Exotic particles below the TeV from low scale flavour theories

    Get PDF
    A flavour gauge theory is observable only if the symmetry is broken at relatively low energies. The intrinsic parity-violation of the fermion representations in a flavour theory describing quark, lepton and higgsino masses and mixings generically requires anomaly cancellation by new fermions. Benchmark supersymmetric flavour models are built and studied to argue that: i) the flavour symmetry breaking should be about three orders of magnitude above the higgsino mass, enough also to efficiently suppress FCNC and CP violations coming from higher-dimensional operators; ii) new fermions with exotic decays into lighter particles are typically required at scales of the order of the higgsino mass.Comment: 19 pages, references added, one comment and one footnote added, results unchange

    Success Factors of European Syndromic Surveillance Systems: A Worked Example of Applying Qualitative Comparative Analysis

    Get PDF
    Introduction: Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors. Materials and Methods: We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events. Results: We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness. Conclusions: We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings

    Cytoplasmic PML promotes TGF-β-associated epithelial–mesenchymal transition and invasion in prostate cancer

    Get PDF
    Epithelial–mesenchymal transition (EMT) is a key event that is involved in the invasion and dissemination of cancer cells. Although typically considered as having tumour-suppressive properties, transforming growth factor (TGF)-β signalling is altered during cancer and has been associated with the invasion of cancer cells and metastasis. In this study, we report a previously unknown role for the cytoplasmic promyelocytic leukaemia (cPML) tumour suppressor in TGF-β signalling-induced regulation of prostate cancer-associated EMT and invasion. We demonstrate that cPML promotes a mesenchymal phenotype and increases the invasiveness of prostate cancer cells. This event is associated with activation of TGF-β canonical signalling pathway through the induction of Sma and Mad related family 2 and 3 (SMAD2 and SMAD3) phosphorylation. Furthermore, the cytoplasmic localization of promyelocytic leukaemia (PML) is mediated by its nuclear export in a chromosomal maintenance 1 (CRM1)-dependent manner. This was clinically tested in prostate cancer tissue and shown that cytoplasmic PML and CRM1 co-expression correlates with reduced disease-specific survival. In summary, we provide evidence of dysfunctional TGF-β signalling occurring at an early stage in prostate cancer. We show that this disease pathway is mediated by cPML and CRM1 and results in a more aggressive cancer cell phenotype. We propose that the targeting of this pathway could be therapeutically exploited for clinical benefit

    Distinctions in gastric cancer gene expression signatures derived from laser capture microdissection versus histologic macrodissection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastric cancer samples obtained by histologic macrodissection contain a relatively high stromal content that may significantly influence gene expression profiles. Differences between the gene expression signature derived from macrodissected gastric cancer samples and the signature obtained from isolated gastric cancer epithelial cells from the same biopsies using laser-capture microdissection (LCM) were evaluated for their potential experimental biases.</p> <p>Methods</p> <p>RNA was isolated from frozen tissue samples of gastric cancer biopsies from 20 patients using both histologic macrodissection and LCM techniques. RNA from LCM was subject to an additional round of T7 RNA amplification. Expression profiling was performed using Affymetrix HG-U133A arrays. Genes identified in the expression signatures from each tissue processing method were compared to the set of genes contained within chromosomal regions found to harbor copy number aberrations in the tumor samples by array CGH and to proteins previously identified as being overexpressed in gastric cancer.</p> <p>Results</p> <p>Genes shown to have increased copy number in gastric cancer were also found to be overexpressed in samples obtained by macrodissection (LS <it>P </it>value < 10<sup>-5</sup>), but not in array data generated using microdissection. A set of 58 previously identified genes overexpressed in gastric cancer was also enriched in the gene signature identified by macrodissection (LS <it>P </it>< 10<sup>-5</sup>), but not in the signature identified by microdissection (LS <it>P </it>= 0.013). In contrast, 66 genes previously reported to be underexpressed in gastric cancer were enriched in the gene signature identified by microdissection (LS <it>P </it>< 10<sup>-5</sup>), but not in the signature identified by macrodissection (LS <it>P </it>= 0.89).</p> <p>Conclusions</p> <p>The tumor sampling technique biases the microarray results. LCM may be a more sensitive collection and processing method for the identification of potential tumor suppressor gene candidates in gastric cancer using expression profiling.</p

    T Wave Alternans in high arrhythmic risk patients: Analysis in time and frequency domains: A pilot study

    Get PDF
    BACKGROUND: T wave alternans (TA) is a repolarisation phenomenon manifesting as a microvolt beat to beat change in the amplitude of the T wave and ST segment. TA has been shown to be a predictor of arrhythmic risk in unselected myocardial infarction populations. TA has not been used to differentiate risk within the ischaemic cardiomyopathy population. METHODS: The subjects investigated comprised, Group 1: 7 stable patients with remote (>20 months) extensive myocardial scarring and no arrhythmic events (NYHA 3 and 4). Group2: 9 post infarction patients with malignant arrhythmia and implantable defibrillator. During breath holding, 20 continuous QRST complexes from each patients X, Y and Z leads were digitally recorded. Time domain, resultant absolute difference vectors (ATA), were calculated for alternate resultant T wave sequences. Group differences between the magnitude and temporal distribution of mean ATAs and their spectral and cross-spectral analysis were compared. RESULTS: Group 1 v Group 2 mean ATAs were 10.7 (7.17) v 11.7 (8.48) respectively, not significant. Each group had a homogenous temporal distribution of ATAs. Both group's largest mean ATA frequency components were between 0 to 25 Hz, the largest ATA component being at the DC frequency. Cross spectral analysis showed no significant differences in group ATA frequency content. CONCLUSION: The frequency content and microvolt magnitude of T wave alternans was not significantly different in these two groups. The specificity of T wave alternans for differentiating arrhythmic risk in post infarction scarring and heart failure needs investigation

    The anomalous U(1) global symmetry and flavors from an SU(5) x SU(5)′' GUT in Z12−IZ_{12-I} orbifold compactification

    Full text link
    In string compactifications, frequently there appears the anomalous U(1) gauge symmetry which belonged to E8×\timesE8 of the heterotic string. This anomalous U(1) gauge boson obtains mass at the compactification scale, just below 1018 10^{18\,}GeV, by absorbing one pseudoscalar (corresponding to the model-independent axion) from the second rank anti-symmetric tensor field BMNB_{MN}. Below the compactification scale, there results a global symmetry U(1)anom_{\rm anom} whose charge QanomQ_{\rm anom} is the original gauge U(1) charge. This is the most natural global symmetry, realizing the "invisible" axion. This global symmetry U(1)anom_{\rm anom} is suitable for a flavor symmetry. In the simplest compactification model with the flipped SU(5) grand unification, we calculate all the low energy parameters in terms of the vacuum expectation values of the standard model singlets.Comment: 18 pages, 4 figur
    • …
    corecore