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1 Introduction

Notwithstanding our fair knowledge of quark masses, mixings and CP phases and strong

constraints on neutrino ones, and the profusion of models in various frameworks, we have

no cogent explanation for their origins. Even worse, most of the acceptable models are not

directly testable as they do not predict any low energy energy effect but the fermion mass

spectra they were designed for — some nice relations are encouraging but cannot quite

prove a model. In this paper we focus on 4D perturbative supersymmetric gauged flavour

theories — these five assumptions being relevant in our analysis — and claim that, under

some circumstances, these models might predict new characteristic states within the reach

of the LHC.1 The Standard Model (no-suprrsymmetric) counter part is briefly commented

on in the last section below.

Flavour symmetries are chiral, i.e., the parity conjugated states in the small mass op-

erators of quarks, leptons, and higgsinos (µ-term) have different flavour charges so that the

masses are controlled by the amount(s) of flavour symmetry breaking(s) and the charge

1Most of the results here were presented at the Planck2008 conference but were not published.
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differences between parity conjugated states, which we call flavour-chiralities herein. These

flavour-chiralities, as introduced to explain the fermion masses, would generate an anoma-

lous coupling of flavour gauge bosons to photons and gluons. We argue that, in low en-

ergy abelian flavour models, anomaly cancellation generically requires a few extra charged

and/or coloured particles whose flavour-chiralities are possibly close to the higgsino one,

resulting into heavy states of mass O(1 TeV), in spite of a much higher flavour symmetry

breaking scale. They would have peculiar decays into light states as they are required not

to mix with light fermions to avoid, e.g., the destabilization of their mass matrices.

In a matter-of-fact approach, it is not necessary to impose anomaly compensation

within the Standard Model (SM) or the Minimal Supersymmetric SM (MSSM) fermion

field content. Just as some of their masses are reduced by the flavour symmetry, so could

some states that are parity-symmetric with respect to the electroweak interactions, be

flavour-chiral, get their masses suppressed with respect to the cutoff scale and contribute

to anomaly-compensation below it. This is the generic case. If the cutoff is high enough,

they can be integrated out together with the other flavour theory components, but it is

not quite so when the cutoff occurs at relatively low energies.

Effective theories based on flavour symmetries are characterized by a cutoff scale Λ and

the scales where the flavour symmetries are broken down, ǫΛ, ǫ′Λ, . . .. In the spirit of the

Frogatt-Nielsen (FN) idea [1, 2], non-abelian flavour symmetries more naturally explain

empirical relations between masses and mixings,2 while abelian symmetries are suitable

to deal with hierarchies. Here we consider gauged continuous symmetries — in particular

to avoid Nambu Goldstone bosons — but also discrete symmetries that can result from

symmetry breaking of the continuous flavour symmetry.

Some mostly dangerous baryon and lepton number violating operators can be elimi-

nated by exact discrete symmetries like R or matter parity [16], baryon triality [17, 18]

or proton hexality [19], that survive as relics of the flavour symmetry breaking. The last

encompass the others and is implemented here, mainly to avoid proton decay dimension 5

operators. However, it is well-known that four-fermion operators associated to FCNC and

CP violating processes must be suppressed by an effective cutoff at least O(104 TeV) to

comply with the experimental limits [20]. This has been viewed as a generic lower limit

on the cutoff Λ of low-energy effective flavour theories [21]. Therefore, when discussing

flavour breaking at a low scale we mean a cutoff close to this bound, actually a bit lower

due to flavour symmetries.

The MSSM Higgs sector being parity symmetrical, i.e., vector-like with respect to the

electroweak symmetry, the action of the flavour symmetry on higgsinos must be such that

their masses, the µ-term, is reduced by the FN mechanism from the natural value O(Λ) to

the effective supersymmetry breaking scale O(TeV). Hence, the higgsino flavour-chirality

must be relatively large and give commensurate contributions to anomalies. Actually, this

2There is a large variety of those models in the literature; we can only quote a small part here [3–14].

They are not all consistent with the present data on fermion masses and mixings [15].
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is an example of a vector-like fermion that would be light enough to be detected as much

as it gives a sizable contribution to the anomalies of the flavour symmetry! In this paper,

we investigate whether anomaly cancellation might predict other coloured and/or charged

states along the same lines. Notice that higgsinos do not mix to leptons because they are

even under matter parity (odd under R-parity) and we shall generalize this property to

other possible vector-like states by defining the discrete symmetry just mentioned.

We simplify our approach by picking a single U(1)X flavour group broken at a scale ǫΛ

so that a coupling or a mass is reduced by a factor ǫn, where n is the flavour charge of the

corresponding effective operator. We further require that a combination of the flavour and

the weak hypercharge transformations contains the exact discrete symmetry that survive

at low energies. If it is anomalous, one must rely on the Green-Schwarz cancellation

mechanism [22], which assumes an underlying string theory. Then, the Dine-Seiberg-Wen-

Witten mechanism [23–25] ensures the breaking of U(1)X and defines the scale ǫΛ a bit

below the Planck scale [26–32]. However, this makes the search for direct signals of this

U(1)X moot.

Only if the U(1)X is non-anomalous, one can adjust the flavour theory such that ǫΛ is

much lower than the Planck scale. It is known that anomaly cancellation within the MSSM

field content in abelian flavour models is tightly constrained by the quark and lepton masses

and mixings [28]. From the balance among the value for Λ, the types and the masses of

the newly introduced heavy particles, we find, under (presumably) reasonable assumptions,

that Λ should be at least O(103 )TeV, while some new states could get much lower masse,

plausibly within the LHC reach.

In order to avoid stable heavy “quarks” or “leptons”, the models are also selected by

the condition that heavy states decay into MSSM states, which is naturally implemented by

the exact residual discrete symmetries.The new uncoloured weak doublets, are produced

like heavy (s)leptons, but decay into three (s)quarks, one of each family! Actually, the

“easier” signal at the LHC would be the production of a heavy coloured weak-isosinglet

“squark” with more model dependent signatures: two quarks or one lepton plus one or two

(s)quarks (the last possibility being favoured)!

Experiments on FCNC and CP violations impose severe suppressions of the coefficients

of some dimension five operators in the effective superpotential and on dimension six op-

erators in the effective superpotentials. The strongest bound comes from the latter once

the flavour gauge boson is integrated out as already mentioned. The exchange of the new

heavy quarks can also produce FCNC effects so excluding most of one of the three types

of models.

In the next section, our requirements are stated and the effective theory is implemented

in the framework of a single flavour charge. The realistic choices of flavour charges are se-

lected from the fermion masses and the cancellation of anomalies via heavy fermions. The

new exotic states are dealt with in section 3, where their masses are estimated and their de-

cay modes established, for the abelian flavour benchmark model. Section 4 discusses FCNC

constraints before and after integrating out the new heavy particles. The closing section

presents a few conclusions, as well as comments on shortcomings and generalizations.
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2 An all-in-U(1) model

In this section, we construct and analyse a benchmark model based on the suggested

scenario. Let us first recollect seven issues to be addressed by a supersymmetric flavour

theory: 1) the hierarchy among the SM fermion masses, the hierarchy among the entries

of the CKM matrix and the value of the CP violation phase, δ; 2) the contrasting pattern

of the neutrino mass matrix, with (at least two) less hierarchical eigenvalues and two

large mixing angles; 3) the µ-problem: the higgsino mass must be suppressed from the

cutoff scale down to the level of the supersymmetry breaking masses; 4) renormalizable R-

parity violating superpotential operators that cause the emergence of L and/or B violating

terms and, in particular, those that destabilize the proton; 5) non-renormalisable R-parity

conserving superpotential operators (like QQQL) giving rise to L and/or B violations

as well; 6) non-renormalisable operators in the superpotential (like UQDQ) and in the

Käler potential (like Q†QD†D) leading to FCNC and CP violations; 7) flavour mixings

and CP -violating phases in the supersymmetry breaking of the MSSM, some of them

restricted by tight upper bounds from FCNCs and CP violation searches. The last, so-

called supersymmetric flavour problem, is not addressed here since it strongly depends

on the supersymmetry breaking and mediation mechanism, which is not specified here.3

CP violations cannot be generated in the simple flavour sector discussed here and, in the

absence of a CP theory, we consider only limits that would require a very small phase.

We try and choose the simplest flavour symmetry, consisting in a single abelian charge,

denoted by X. It is hopeless to reduce proton decay to below the experimental bound,

therefore we forbid it by assuming an exact Z3 symmetry (baryon triality), that excludes

supersymmetric operators like QQQL or UDD. Lepton number conservation can be in-

troduced through a Z2 (matter parity), so to allow for neutrino masses. Their product is

a Z6 (proton hexality). This exact (gauged) discrete symmetries should result from the

breaking of a continuous gauged anomaly-free symmetry and we make the economical and

elegant choice that it coincides with U(1)X . More precisely, in general, it is a discrete

subgroup of U(1)X ⊗ U(1)Y that leaves the Higgses invariant. This solution has a price:

this Z6 does not commute with SU(5), but, in practice, Abelian flavour models are only

marginally consistent with grand-unification anyway.

In order to break the flavour symmetry we need flavoured SM singlets, or flavons, with

both signs of X to allow for a symmetry breaking superpotential, and also for anomaly

cancellation as discussed later on. We assume the anomaly-free U(1)X flavour symmetry

to be broken by a vector-like pair of flavon chiral superfields (A, B) with X-charges ∓1

into the residual discrete Z6 symmetry. The breaking scale is given by the v.e.v ’s

ǫ ≡
〈A〉

Λ
=

〈B〉

Λ
,

that result from a generic superpotential W (A,B) = ΛAB(ǫ + f(AB/Λ2) where the small

parameter ǫ will be fixed by the fermion mass matrices to be close to the Cabibbo angle.

3An inverted hierarchy in the squark and slepton mass differences could provide tests for the flavour

model (see, e.g., [30]) but since they are already tightly constrained by FCNC experiments, they would be

difficult to measure.
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Within the Frogatt-Nielsen mechanism, the coefficient of an operator O in the effective

Lagrangian below the flavour symmetry breaking is suppressed by a factor ǫ|XO|, where the

chirality XO is the sum of the X-charges of the fields in O, since the lowest dimension

corresponding invariant operator has |XO| additional A or B flavon fields. Hence the

basic parameters in the Lagrangian are Λ, ǫ and, rather than the X-charges, the X-

chirality matrices defined by the sum of the X eigenvalues of fermions with the same

electric charge and colour, and their charge conjugated states, Xf = X(f)+X(f c). Indeed,

the observed flavour physics involve B and L conserving operators because of the exact

discrete symmetry.

The first step is to define the action of the anomaly-free Z6 symmetry on the MSSM

fields and then write the Z6-invariant MSSM effective model. The charges must be consis-

tent with the presence of several operators in the superpotential, whose invariance under

Z6 means that the corresponding charge combinations must be integers. Of course, they

must be family-independent to allow for family mixing. The appropriate choice of the

charges can be written as:

ZQ = 0 , ZU = ZE = ZHd
= 1/6 ,

ZL = −2/6 ZD = ZHu = −1/6 . (2.1)

The X-charges are given by Xi = integer + Zi. This Z6 is broken by the Higgs v.e.v ’s but

the combination X ′ = X + Y/3 = integer + Z ′
i is such that Z ′

Hi
= 0 and so defines the

exact abelian discrete symmetry that imposes the needed selection rules. The charges are

simply Z ′ = 1/18 = B/6 for any quark, Z ′ = 1/2 = L/2 for any lepton, and the opposite

ones for the C-conjugated states. For completeness, this is explained in the appendix.

This discrete symmetry dictates the selection rules that define the effective Lagrangian

beneath the flavour symmetry breaking scale ǫΛ, including the terms containing the new

fields to be added in the next sections. The general superpotential of the MSSM superfields

with operators up to dimension five consistent with the Z6 charges in (2.1) is:4,5

W = µ HdHu + Y u
ij QiHuU j + Y d

ij QiHdD
j + Y e

ij LiHdE
j (2.2)

+
Cqq

ijkl

Λ
U iQjDkQl +

Cqe
ijkl

Λ
U iQjEkLl +

Ch

Λ
(HdHu)2 +

Cij
hl

Λ
LiHuLjHu.

The orders of magnitude of the coefficients of the bilinear (µ-term), trilinear (Yukawa

couplings to the Higgses) and quadrilinear couplings are given by powers of the parameter

ǫ defined by the modulus of the sum of charges of the corresponding superfields (because

of the symmetry X → −X). These charge combinations are fixed by the phenomenology

of the corresponding operators that we now turn to discuss.

4 Notations are quite standard MSSM ones. As usual the X-charges are denoted by the same symbol as

the left-handed fermions (X(f) = f) of the corresponding chiral multiplets, i, j = 1, 2, 3 are family indices.
5 Possible dimension five operators (trilinear terms ) in the Kähler potential can be transposed into the

superpotential by an analytic field redefinition in the effective theory.
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2.1 SM fermion masses and mixings

The trilinear terms QiHdD
j , QiHuU j and LiHdE

j yield the fermion mass and mixing

hierarchies so that, with

qi + hu + ūj = X u
ij, qi + hd + d̄j = X d

ij , li + hd + ēj = X e
ij .

then X u,d,e
ij ∈ Z , and the Yukawa coupling matrices are

Y u
ij ∼ ǫ|X

u
ij | , Y d

ijǫ
|X d

ij | , Y e
ijǫ

|X e
ij | . (2.3)

Many of these X ’s can be specified from the known fermion masses and mixings. Because

of the symmetry in the flavon sector, the results are invariant under X → −X, so we

choose the value of the X u
ij and X d

ij to be positive. The fact that all of them have the same

sign comes from the strong hierarchies in quarks masses and mixings and the well-known

strong correlations among them (thus only one flavon is relevant for their masses). Instead,

for leptons, one must keep free the signs in the matrix elements of X e as we shall prove

later on. The dependence on tan β is taken into account by the parameter x, defined by

tan β ∼ ǫ2−x. We also introduce two “fuzzy factors”, y and z taking values 0 or 1, to

account for some freedom in the relations. Then, with ǫ ∼ θC , the Cabbibbo angle, the

charged fermion masses lead to the following choices:

X u =







8 5 + y 3 + y

7 − y 4 2

5 − y 2 0






X d =







4 + x 3 + x + y 3 + x + y

3 + x − y 2 + x 2 + x

1 + x − y x x






. (2.4)

We assume a hierarchical structure in Y e that reproduces the charged lepton mass ratios,

diagX e = {±(4 + x + z) , ±(2 + x) , ±x , } , (2.5)

since the diagonal terms (or the trace) mostly appear in the relations below.

2.2 Effective neutrino masses and mixings

The lepton-higgsino X-chiralities, li + hu, controlling both R-parity and neutrino masses,

are defined similarly to the higgsino one that is in charge of the µ-term. The quadrilinear

term LiHuLiHu gives rise to the effective neutrino mass matrix,

Mνij
∼ ǫ|X

ν
ij |

(174 GeV)2

Λ
, X ν

ij = li + hu + lj + hu (2.6)

The X ν
ij ∈ Z must be odd by the Z6 symmetry and large enough to suppress (174 GeV)2/Λ

down to the typical neutrino mass eigenvalues. Within the indeterminacy inherent to the

model, we take a texture consistent with the small hierarchy and large mixings of the

MNS matrix,

diagX ν = ± (X ν + 2v . X ν , Xν ) , (v = 0, 1) (2.7)

Hence, the mass parameter of atmospheric neutrino oscillations must satisfy

ǫXν ∼ matmΛ/(174 GeV)2 ∼ ǫ13Λ/(1000 TeV). (2.8)

– 6 –
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2.3 µ-parameter

The bilinear term, HdHu, has a charge hd + hu = Xµ ∈ Z, so the effective higgsino mass is

naturally related to the cutoff by:

µ ∼ ǫ|hd+hu| · Λ = ǫ|Xµ| · Λ (2.9)

and must be close to the MSSM scale, O(TeV), while Λ must be much larger to avoid FCNC

and CP flavour problems and, anyway, for the superpotential in (2.2), to be meaningful.

Therefore the higgsino X-chirality, Xµ has to be large and contributes to the anomalies as

displayed below. Its choice fixes the cutoff scale of the flavour model.

Of course, this is not quite a solution to the µ-problem since it does not relate the µ

scale to the supersymmetry breaking one. Assuming another solution to the µ-problem, the

contribution (2.9) must be subdominant. But, one cannot allow for a small contribution

from (2.9) and invoke a standard Giudice-Masiero mechanism [33] because the flavour sym-

metry would imply a similar suppression factor with respect to the effective supersymmetric

breaking scale.

Finally, note that since HdHu exists, then so does HdHuHdHu, with Ch ∼ µ2/Λ2,

which turns out to be very small and negligible to affect the electroweak symmetry breaking.

And since QHuD, QHdD, LHdE and HdHu must exist, neither UQEL nor UQDQ can

be forbidden by flavour symmetries.

2.4 Anomaly cancellation

The next step is to fulfill the no-anomaly requirements

AC = AW = AY = A′
Y = 0, (2.10)

corresponding to the vanishing of the strong, weak isospin, and the the two weak hyper-

charge anomalies, respectively. Since Qem = Y + T3, has vector-like representations, it is

convenient to replace AY and A′
Y by the corresponding Aem, more directly related to the

X-chiralities fitted to fermion masses, and A′
em (linear in Qem). As already anticipated

in (2.3), and as we generalize below, anomaly cancellation without extra-states is possible

at the price of having lepton X-chiralities of both signs. This could lead to (very model

dependent) patterns of lepton mixing different from quark mixings.

More generally, we must introduce X-chiral strongly and weakly interacting heavy

matter to compensate the anomalies generated in the MSSM sector, which has to be vector-

like under the SM symmetries, to lie above the weak scale. Our choice here is to preserve the

nice MSSM gauge coupling unification and asymptotic freedom. Thus, we can only add SM

vector-like matter associated to quarks and leptons filling one or two 5+5 representations

of SU(5)): quarks, (Di, D̄i), and leptons (Li, L̄i), i = 1, 2 (Di and Li have the same

SM charges as D’s and L’s, respectively). Their total X-chiralities, are the traces of the

matrices (lowercase letters are the corresponding X-charges):

X d

ij = (di + d̄j) X l

ij =
(

li + l̄j

)

. (2.11)

Correspondingly, their mass matrix elements are mD
ij∼ǫ|X

d

ij |Λ and mL
ij ∼ǫ|X

l

ij |Λ, respectively.

– 7 –
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Here we focus on anomalies quadratic in the SM vector-like charges, namely, colour

and Qem, directly related to the Yukawa matrices through the X-chiralities defined in (2.3).

Gathering the contributions from the MSSM states as well as the possible new heavy states,

the anomalies to be cancelled are:

AC = Tr
[

X u + X d + X d

]

− 3Xµ , (2.12)

Aem −
4

3
AC = Tr

[

X e −X d −X d + X l

]

+ Xµ .

Hence anomaly cancellation means:

TrX d = −Tr
[

X u + X d
]

+ 3Xµ , (2.13)

TrX l = TrX d + Tr
[

X d −X e
]

−Xµ .

Since X u and X d are non-negative matrices, we can replace (2.4) into (2.13) to get

TrX d = 3 (Xµ − 6 − x) , (2.14)

First note that (2.14) excludes Xµ ≤ 3 which leads to mD
i ≪ µ, and, anyhow, a cutoff

too low to suppress rare processes . Without X-chiral heavy matter, AC = 0 implies

Xµ = 6 + x, hence a cutoff Λ & ǫ−6µ ∼ 2 × 104 TeV. Any direct evidence for the model

would show up far beyond the LHC reach, yet it provides an example of the need for a

vector-like fermion, the higgsino which cancels the matter fermion anomalies as much as it

is light. In order to have observable TeV-scale phenomena we need to introduce appropriate

heavy states and Xµ = 4 or 5.

Now, let us define the difference w = TrX d − TrX l and replace the fit to the fermions

masses into the second relation in (2.13) to obtain,

Tr [|X e| − X e] = Xµ + z − w . (2.15)

The vanishing of the other two anomalies (as well as the pure U(1)X anomalies) are

not so simply related to the fermion mass eigenvalues and X-chiralities and will further

constrain the charges. Since they can be fractional, we study in the appendix the cancella-

tion of the fractional part of the anomalies. The weak anomaly, AW , imposes the choice of

the Z6 as in (2.1), while A′
em, involving X2, just requires w = 3n. As discussed in the next

section, n 6= 0 tend to spoil gauge coupling unification, and we keep only w = 0 hereafter.

Notice that, from (2.15), one of the X e
ii must always be negative for anomaly cancellation

as stated before.

The integer part of the X-charges are not uniquely defined by the cancellations of AW

and A′
em, the neutrino masses and some constraints from the other mass matrices. They

are important for the decay properties of the heavy states, but this is not discussed in this

paper to such a level.

Finally, for the relevant values, Xµ = 4 , 5 , w = 0, one gets the solutions in table 1,

where the only negative X e
i in each case is displayed and the associated values of the cutoff

for a range of ǫ.

– 8 –
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w Xµ z x X e
i < 0 Λ

0 4 0 0 X e
µ = −2 (350 − 1200) TeV

0 4 0 2 X e
τ = −2 (350 − 1200) TeV

0 5 1 1 X e
µ = −3 (1.5 − 7.0) × 103 TeV

Table 1. Solutions to the anomaly conditions, see text, and corresponding cutoff scale for

ǫ = .20 ± .03.

3 Exotic matter below the Tev

Several properties of the new heavy states are fixed from the conditions and results stated

in the previous section. We now turn to show how they their masses could be around

the TeV and their couplings to the known quarks and leptons exotic. For this sake we

impose approximate gauge coupling unification and ask the discrete symmetry to forbid

the heavy states to mix to SM ones in the mass matrices but without making them stable.

In this sense, the new matter hold exotic baryon and lepton numbers. We also simplify

the analysis by considering more generic cases and skipping more peculiar issues since our

aim is to define a robust benchmark model.

3.1 Masses

If one wants to preserve gauge coupling unification at a level close to that of the MSSM, the

masses of the heavy leptons, mLi
, and heavy quarks mDi

cannot differ too much. Indeed,

their (one-loop) contribution to the difference between the strong and weak couplings at

mZ are given in terms of their mass matrices by

∆
(

α−1
s − α−1

2

)

=
1

2π
ln det

mL

mD

(3.1)

The experimental uncertainties on this difference is O(.12) and for the new contributions

not to be larger than this uncertainty, we should impose 0.5 / det(mL/mD) . 2. To

translates it into a condition on charges, we have to fix the ambiguity in the pairing of

the indices in the X-chiralities defined in (2.11).6 We notice that, in the absence of fine-

tuning, there is always a choice — not necessarily the one adopted later on - such that

ln det mL ≃ Tr|X l| ln ǫ, and similarly for mD. With these choices we get

− 0.5 ≤ Tr|X l| − Tr|X d| ≤ 0.5 (3.2)

This is not enough to obtain a definite limit on the difference w defined above, but we find

no solution with w 6= 0 to be consistent with (3.2) and (2.15).

Basically, the LHC could detect heavy quarks and, possibly, leptons whose masses are

O(µ). To discuss this condition, it is convenient to redefine the indices in such a way that

|d2 + d̄2| = min |di + d̄j |, so that the mass eigenvalues satisfy:

mD2
∼ ǫ|d2+d̄2| mD1

. ǫ|d1+d̄1| . (3.3)

6Indeed, in general, the C-conjugated states defined by the mass eigenstates are not eigenstates of the

broken charge X, unless these states differ by their transformation under the discrete symmetry.
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Xµ 4 4 4 5 5 5 5

x 0 0 0 1 1 1 1

TrX d -6 -6 -6 -6 -6 -6 -6

d1 + d̄1 -5 -4 -3 -6 -5 -4 -3

d2 + d̄2 -1 -2 -3 0 -1 -2 -3

mD1
/µ ǫ ǫ0 ǫ−1 ǫ ǫ0 ǫ−1 ǫ−2

mD2
/µ ǫ−3 ǫ−2 ǫ−1 ǫ−5 ǫ−4 ǫ−3 ǫ−2

N.B. ! X ? ! X ? ⌢

Table 2. Solutions to the anomaly conditions: Xµ is the higgsino X-chirality, x is related

to tanβ as defined in the text, di + d̄i are the X-chiralities of the heavy antiquarks, TrX d

is their contribution to the anomalies. The (orders of magnitude of the) masses of the heavy

“quarks/antiquarks”corresponding to each solution are given in units of the higgsino mass as pow-

ers of the Cabbibbo angle, ǫ. The symbols in the last row denote one of the following situation

with respect to the heavy quark range to be scanned at the LHC: within (X), already excluded or

within (!), above or within (?) and much above (⌢).

From the QCD anomaly condition (2.14), and the condition that the lightest heavy quark

mass must be at least O(ǫµ), we have

Xµ + 1 ≥ |d1 + d̄1| ≥
3

2
(6 + x −Xµ) (3.4)

This implies Xµ > 3 to avoid conflict with experimental limits on heavy quarks, leaving

only two possibilities, Xµ = 4 , 5 . The solutions to (3.4) are displayed in the table 2, where

the masses are given by their ratios to µ in units of ǫ.

Therefore, after the Higgs X−chirality is chosen to allow for low energy flavour sym-

metry, and to fulfill the anomaly cancellation relations without states too light to have

escaped observation, one ends with: Xµ = 4 or 5 , corresponding to a cutoff Λ ∼ 600µ ,

and Λ ∼ 3000µ respectively; and several possibilities for the masses of heavy “quarks and

leptons” . Notice that the heavy masses are independent of the higgsino X-chirality, hence

of the cutoff.

Among the four solutions there are two with one of the states within the LHC reach,

namely, those with masses O(µ) = O(TeV) or O(.2 TeV). The last case is more critical in

many aspects. Notice that the masses are defined modulo O(1) factors, renormalization

from the cutoff and, for the scalars, supersymmetry breaking masses, that are supposed

to be O(TeV) as well. This is a serious obstacle for a generic discussion of the associated

phenomenology at the LHC. Of course, the solutions can be different for the L’s and the

D’s, corresponding to four different possibilities.

With regards to electroweak precision tests, the fact that there is no mixing to the light

fermions and no large contribution to the heavy masses from Higgs couplings, preserve these

states from these constraints which in other instances can be very strong (see, e.g., [34]

and references therein).
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ZD 0 1/3 1/2

ZL 0

D UD QL UUE

D̄ QQ UE −−

L QQQ

Table 3. Main decays of exotic quarks and leptons.

3.2 Decays

Fields with the same SM and Z6 quantum numbers can mix in the mass matrices. We

do not want LHu/L̄Hd, L̄L and D̄D mass couplings that might destabilize the assumed

light mass matrices (though this might be an interesting alternative in some cases) and we

naturally implement it by the choice of the Z6 charges, Zi. From eq. (2.1), this amounts

to choose: ZL 6= 1/6, −2/6 and ZD 6= −1/6.

For these states to be unstable and have at least one decay channel into MSSM

states, we ask for such a coupling with dimension four or five (up to quadrilinear in

the superpotential, trilinear in the Kähler potential). From eq. (2.1) one selects the

SU(3) ⊗ SU(2) ⊗ U(1) ⊗ Z6 invariant operators according to ZL and ZD. The solution

ZL = 0 is unique and leads to the operator QQQL while there are three solutions for ZD

which we list below together with the respective allowed exotic superpotential operators:

• ZD = 3/6 , ZL = 0: QQQL, UUDE, QD̄D̄L̄, LDD̄L̄; the first two cause the decay

of heavies into three MSSM particles.

• ZD = 2/6 , ZL = 0: QQQL, QLD, EUD̄, LDHuD̄, DDD̄D̄; the first causes the

decay of L into three quarks; the decay of D into a quark plus a lepton happens

mainly due to the second and the third Yukawa couplings.

• ZD = 0 , ZL = 0: QQQL, QQD̄, UDD, QLD, QD̄D̄L̄, D̄DL̄Hd, D̄U L̄Hu; the first

causes the decay of L into three (s)quarks; the decay of D into a quark and a squark

happens due to the second and the third term.

The two Di’s may have different Z6 charges and so may the two Li’s. The correspond-

ing decay modes are displayed in table 3. Some heavier states could also mostly decay by

cascading. Lifetimes and flavour structures of the decay products are fixed by further defin-

ing the X-charges, consistently with the remaining anomalies, in particular. The variety of

combinations of X-charges in the couplings introduce different patterns of suppression of

the different decays. The phenomenology of these states has a strong model-dependence on

the supersymmetry breaking terms that affect the spectrum, including the decay direction

between fermions and scalars.

In spite of the exotic character and apparent distinguishing decay modes, they have

not necessarily good signatures. Their masses are only predicted up to O(1) factors. Here,

we shall just discuss a few more or less generic features. We recall that only one of the Di’s

and/or one of the Li’s would be present, and we skip the indices. The phenomenology of
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supersymmetric vector-like extra-matter that includes a D-like state (but with B = 1/3)

has been recently analysed [34] by assuming very small mixings to the light quarks. Some

results can be usefully adapted to the exotic states herein.

The L decay into two squarks and one quark, one of each family. Roughly, it has7

cτ ∼ ǫ2n10−6cm, where n is the absolute value of the total X-charge of the corresponding

coupling. The reduction factor might increase cτ by several orders of magnitude, hardly

enough to make it to cross the detector, perhaps a displaced vertex in some cases: the issue

is very model dependent. The main problem is the weak production rate at the LHC.

Instead, the D is strongly produced and more auspicious for LHC searches. We separate

the three possible discrete symmetry charges (here, n is the smallest absolute value of the

total X-charge of all flavour channels).

1. ZD = 1/2: the decay is three-body, presumably decaying inside the detector, with

a cτ analogous to L. The signature is the spectrum of the pair of prompt energetic

leptons (if the squarks are not relatively too heavy, which they could be). Of course,

the leptons can be neutrinos.

2. ZD = 1/3 (lepto-quarks): certainly the easiest to see at the LHC, a pair decaying

with cτ ∼ ǫ2n10−17cm and two very hard leptons — if the squark is not too heavy

— and two jets, altogether. But n could be large.

3. ZD = 0: (di-quarks)with a life-time analogous to the previous case, but a two-jet

decay, more difficult to identify.

It could seem that for the last case the scalar D could be produced as a resonance in

quark-quark scattering. However, as discussed in the next section, this would be associated

to strong FCNC violation and it seems difficult to choose the charges so to do that and

still keep a reasonable cross section for the flavour conserving processes based only on the

abelian symmetry. Idem for ZD = 1/3 and lepton-quark scattering. In any instance, when

allowed these lepto-quarks and di-quarks would presumably have their lifetime strongly

increased by the flavour factor. Therefore only ZD = 1/2 seems really generic.

Finally, it is worth noticing that the solutions displayed here are associated to a bench-

mark model with several optional assumptions. Other flavour models could have different

spectra. Also, in the present model, there are other solutions where none of the heavy

states is inside the LHC range. Still, it illustrates the fact that flavour theory could be

observable in colliders through new heavy vector particles.

4 New sources of FCNC and CPV

The experiments are regularly tightening the already very restrictive bounds on new physics

contributions to FCNC and CP violating processes. This has been translated in terms of

effective operators into a cutoff O(104TeV) for several of them — specially if CP phases

are larger — unless their coefficients could be suppressed, e.g., by the flavour symmetries.

7For Λ ∼ 5× 103 TeV, since lower values are excluded by the FCNC measurements, as discussed below.
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For details, see e.g., the recent review [20]. The well-known constraints on the MSSM

can be avoided with supersymmetry breaking parameters above or close to the TeV scale,

at the price of controlling some scalar mass differences and small CP phases. As already

stated, we assume this to be the case. In this section we look for new effects, inherent to

our model. We separate these contributions according to the dimension of the dangerous

operators, formulated in the supersymmetric language.

4.1 Dimension five FCNC operators

The quadrilinear interactions in (2.2) are strongly bounded from the experimental limits

on FCNC and CP violations so setting a lower limit on the flavour symmetry breaking

scale. These bounds were numerically studied, e.g., in [36]. For our purposes here, we

would rather present an analysis on an order of magnitude footing (that looks appropriate

to models that only predict orders of magnitude!), which takes advantage of the direct

relation between Λ, µ and X µ. Their coefficients are,

Cqe
ijkl ∼ ǫ|X

u
ij+X e

kl
−Xµ| Cqq

ijkl ∼ ǫ|X
u
ij+X d

kl
−Xµ| . (4.1)

and let us concentrate on the contributions from the operators UQEL and UQDQ to FCNC

and CP violating electromagnetic transitions of leptons and quarks: ℓj → ℓk γ and dj →

dk γ through the flavour changing magnetic moments µℓ
jk and µd

jk and the electric dipole

moments, dℓj
and dd. The two-loop diagrams are the supersymmetric analogous to the

Barr-Zee one [35] — in the artificial limit where the higgsino mass is very large. Baring pos-

sible interferences between the different contributions, and for the sake of an order of mag-

nitude estimate, we assume all the supersymmetry breaking parameters to be O(µ). Then,

up to several O(1) factors, the magnetic and electric dipole moments are roughly given by

(µ + i d)jk ∼
∑

i

Cqf
iijk

Λ

eαw

8π2

mui

µ
( f = e , d ) (4.2)

where: the quark mass mui
keeps track of the chirality/isospin change. An estimate of the

traditional (one-loop) supersymmetric contributions due to the textures in the A-terms

to (µ + i d)jk along the same lines gives O(eαwmfjk
tan β / 4π µ), where the mass matrix

elements represent the isospin, flavour and CP violations (of course this choice is only

indicative).8 Now, let us require that (4.2) are at most of the same order of magnitude as

those traditional one-loop ones, namely,

Cqf
iijk

µ mui

Λmfjk
tan β

. O(2π) ( f = e , d ) (4.3)

and after replacing (2.3) and (4.1) we obtain the constraints,

∆X f
jk = |X u

ii + X f
jk −X µ| + X µ + X u

ii − |X f
jk| ≥ −1, (4.4)

8Actually we do not know the charged lepton mixing angles and CP phases, we are assuming they are

similar in both scalar and fermion masses.
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With the allowed values for the X-chiralities, this condition is always satisfied. The worst

case is for i = 3 and X f
jk ≥ X µ when ∆X f

kl = 0 from the stop loops. Therefore, the only

cases in the balance are s → d γ , b → s γ , possibly µ → dk γ , as well as to de and dd for

some choices of X-chiralities.

One still has to check other processes, the most constraining coming from KK̄-mixing.

The corresponding operator has coefficient Cqe
1212 and from the mass matrices and X µ,

Cqe
1212 ∼ ǫ5. Evaluating the one-loop diagram leading to the four-fermion interaction along

the same lines as above, one obtains the effective cutoff:

Λ2
eff ∼

αwµΛ

2πCqe
1212

∼
αw

2π
Λ2 (4.5)

which by comparison with the experimental bounds, puts a limit of about O(103TeV) on

the cutoff Λ.

The conclusion is that the flavour/CP issues related to the UQEL and UQDQ terms

in (2.2) are not worse than the standard MSSM A-term contributions. The explicit cal-

culations of the bounds on Λ in [36], after the appropriate rescaling of µ, agree with our

rough estimate within the many uncertainties. Therefore, the models discussed here will

be typically as sensitive to the next round of FCNC/CP experiments as the renormalizable

MSSM, even for unflavoured real soft terms.

Of course, by integrating out flavon fields one generates further contributions to Cqe
ijkl,

Cqq
ijkl, as well as to Ch. The term generated from the later can be written as

1

8ǫ2Λ3

(

∂WMSSM

∂ǫ

)2

(4.6)

where WMSSM is the superpotential (2.2) with the couplings replaced by the corresponding

powes of ǫ. Because of a factor v2/Λ2 the contributions to Cqe
ijkl and Cqq

ijkl are sub-leading.

Instead, the flavon exchange contribution is ǫ−2 larger than the original Ch, but still too

small to be relevant .

For ZD 6= 1/2 integrating out the heavy quark introduce new contributions to these

dimension five operators. Because the mD is O(TeV), one needs a very large suppression,

O(µ/Λ) to be compared with those in the discussion above. These new contributions de-

pend on the largely arbitrary X-charges not the known X-chiralities. For a rough estimate,

note that

∆Cqq
ijkl

Λ

µ
. ǫ|X

u
ij+X d

kl
−Xµ+X d |−|X d |−Xµ

, (4.7)

where the r.h.s. is almost always very large. It is easy to check that for most choices of

the charges the coefficients are not reduced enough, in particular for those related to KK̄.

Therefore these choices of ZD become more marginal while the safe case ZD = 1/2 is

preferred.

4.2 Dimension six FCNC operators

The relevant operators contributing to FCNC are those in the Kähler potential of the form

D†
i DjQ

†
kQl/Λ

2 and analogs. The resulting limits from several measurements and without
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suppressions would be Λ < O(103)TeV). However their coefficients can be expressed in

terms of the “known” X-chiralities, like in the previous example where the exponent of ǫ

is |X d
jk − X d

ik|, hence as ratios of mass matrix elements. This reduces the coefficients for

relevant cases. The only exception is for µ−e conversion since X d
22 < 0, when the reduction

is even more efficient.

Integrating out the gauge sector to define the supersymmetric Fermi approximation,

one obtains quartic flavour diagonal corrections to the Kähler potential like those above

but diagonal in the basis where X is diagonal, with a cutoff (equivalent to GF ) given by

the flavour symmetry breaking scale, (ǫΛ)2, hence ǫ−2 times larger than those discussed

before. In the physical basis, FCNC interactions are introduced with coefficients given by

the mixing angles that diagonalize the masses. For KK̄-mixing this provides a factor ǫ−2

that compensates the same factor in the denominator and preserves the limit on Λ, for

the others the reduction is even larger. It is important to note that these contributions

are proportional to the charge-differences with a coefficient fixed by gauge universality and

mixing angles, nothing else. Therefore the limit close to 10−3 on Λ is robust, just as stated

in the literature.9

In summary, the solution to the anomaly cancellation problem with X µ = 4 becomes

somewhat marginal, X µ = 5 (Λ = O(3000TeV) being more comfortable. But both are

very close to be tested in rare process experiments perhaps before the new heavy particles

could even be searched for at the LHC!

5 Conclusions

In this paper, we argue that gauged flavour theories generically require new states to

compensate for anomalies from quarks and leptons in chiral representations of the gauged

flavour group and that QCD freedom freedom may favour their masses being close to the

higgsino mass, or µ-term, of supersymmetric theories. This has been explicitly shown in

supersymmetric models with a single U(1) flavour group which, after its breaking, delivers

discrete baryon and lepton symmetries that forbid dangerous processes such as proton

decay as well as mixings between the MSSM states and the new ones.

As these new particles are often predicted to lie around the TeV scale, they provide a

test for the flavour theories, which are hardly testable otherwise. They have exotic discrete

baryon and lepton numbers, hence peculiar decay modes, although their signatures are

model dependent and not necessarily distinguishing in the busy LHC environment. In

most cases the heavy “quark” decays into a hard lepton plus jets, which could help in their

searches. The heavy “lepton” goes into three quarks (one of each family) but is much less

produced at the LHC.

The higher dimension dimension operators that are sources of FCNC/CPV supersym-

metric operators cannot be all suppressed enough if the cutoff lies below 1000 TeV. This is

due to the exchanges of the flavour gauge boson and supersymmetric partners. Remark-

ably, in the models studied here, where the small µ/Λ ratio is explained in terms of flavour

symmetry: (i) there is a similar lower bound if asymptotic freedom is imposed to limit the

9 For recent discussions see [21, 37].
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number of heavy states; (ii) these theories are not testable for a cutoff well beyond 104 TeV.

Of course these conclusions are stated within the limited framework of effective theories.

The charges in the models developed here are certainly quite confusing 10 although

they are largely dictated by the known quark and lepton masses and mixings, and it seems

difficult to conceive a UV completion yielding such a structure. These models are then

consistent but not quite convincing at least for this reason. Also, they do not predict

precise empirical properties of the mass matrices. These shortcomings could be remedied

by introducing non-abelian flavour symmetries (or, at least, several abelian ones) and

replace large charges by sequential and hierarchical symmetry breaking scales, should it

seem more satisfactory. In principle, the arguments of this paper could be transposed to

these cases: the lighter heavy states will be associated to the anomalies of the symmetries

broken at the lowest scale, presumably in correspondence with lighter quark, neutrino or

the higgsino masses. However, gauging these symmetries usually introduce FCNC because

of the lighter flavour gauge bosons associated to the lower scales along the same lines also

discussed above, and the lowest scale would still be quite high.11

Finally, let us comment on the non-supersymmetric counterpart of these flavour the-

ories [40] with a cutoff lower bounded by neutrino masses and FCNC/CPV restrictions

as above. In the simplest case, one needs only one Higgs doublet and one flavon field

and, assuming that the Higgs mass can be fixed, the analysis is quite similar to the su-

persymmetric version, but for the absence of the µ-term and the corresponding higgsino

chirality. This increases the SM anomalies to be compensated but one can take advantage

of a larger number of new fermions consistent with asymptotic freedom. The most striking

difference is that, because of the three-fermion decay of the new heavy fermions, the latter

are long-lived and stable enough to leave nicer signatures at the LHC.
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A Other anomalies

We study here the cancellation of the other two anomalies, AW and A′
em and, in particular

the vanishing of the fractional contributions related to the conserved discrete symmetry.

10But note that, in the simplest case,they can be all even and reduce to 4, 2, 1 or 0 by taking ǫ ∼ θ2

C .
11recently, it has been shown in [37] how to lower this scale while keeping FCNC under control (see

also [38, 39]). However, the model discuted there is renormalizable and the mass parameters invariant under

flavour symmetry are assumed to be much less than the non-invariant ones, which would be inconsistent

with the effective theory formalism adopted here.
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While the previously discussed anomalies involve only the X-chiralities, these two addi-

tional ones constrain the X-charges themselves. We shall just cancel the fractional part of

the anomalies, frac(AW ) and frac( A′
em) since the integer part can be eliminated by two

combinations of the various (integer parts of) the charges, int(Xi) or int(X ′
i), with many

solutions that we do not discuss here, although they are relevant for the properties of the

heavy state decays.

For this purpose, notice that the conserved symmetry correspond to charges Z ′ such

that: (i) they change sign under charge conjugation, hence all X-chiralities are integers,

(ii) the experimental flavour mixing for quarks and leptons require the Z ′ to be generation

independent. Therefore one has Z ′
Q = Z ′

Qi
= −Z ′

Ui
= Z ′

Di
, Z ′

L = Z ′
Li

= −Z ′
Ei

, Z ′
Di

=

−Z ′
D̄i

, and Z ′
Li

= −Z ′
L̄i

. Furthermore, the neutrino mass imposes frac(2Z ′
L) = 0. At the

exotic side, the phenomenological constraints in section (3.2) gives Z ′
Li

= 0 and Z ′
Di

= δ/18,

with δ = 2 , 8 ,−7.

First consider the weak isospin anomaly, which we write for convenience in terms

of X ′, as

AW = TrX ′T 2
3 = Xµ +

3
∑

i=1

(3qi + li) + TrX l = 0 ,

frac(AW ) = frac(9Z ′
Q + 3Z ′

L) = 0 ,

and notice, besides the well-known solution, Z ′ ∝ B − L, which allows for the proton

decay, the choice Z ′ = (B − 3L)/6, which forbids it and is chosen here, when applied to

the MSSM states.

The A′
em = TrX ′Q2

em anomaly reads,

A′
em =hu

2−hd
2+
∑

i

[

2
(

qi
2−ū 2

i

)

−
(

qi
2−d̄ 2

i

)

−
(

l 2
i +ē 2

i

)

+
∑

i

[
(

d
2
i −d̄

2
i

)

−
(

l
2
i − l̄

2
i

)

]

.

and its fractional part is then,

frac
[

2
(

2TrX u−TrX d−6hu + 3hd

)

Z ′
Q−2 (TrX e−3hd)Z ′

L+2TrX dZ ′
D−2TrX lZ ′

L

]

Interestingly enough, when the Z ′
i, the traces of the matrices given by (2.4), (2.5) in sec-

tion (2.1) and the solutions to the anomaly cancelation conditions (2.13), (2.14) and (2.15)

of section (2.4) are all replaced in this expression, we get a very simple result for its can-

cellation for any of the three values of δ, namely,

A′
em = −

w

3
+ integer = 0 (A.1)

This requires w = 0 corresponding to the approximate equality between the products of

masses of the exotic heavy quarks and of the exotic heavy leptons, otherwise the gauge

coupling unification would be badly violated for |w| = 3 or larger, as previously discussed.
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