157 research outputs found
Audiovisual temporal correspondence modulates human multisensory superior temporal sulcus plus primary sensory cortices
The brain should integrate related but not unrelated information from different senses. Temporal patterning of inputs to different modalities may provide critical information about whether those inputs are related or not. We studied effects of temporal correspondence between auditory and visual streams on human brain activity with functional magnetic resonance imaging ( fMRI). Streams of visual flashes with irregularly jittered, arrhythmic timing could appear on right or left, with or without a stream of auditory tones that coincided perfectly when present ( highly unlikely by chance), were noncoincident with vision ( different erratic, arrhythmic pattern with same temporal statistics), or an auditory stream appeared alone. fMRI revealed blood oxygenation level-dependent ( BOLD) increases in multisensory superior temporal sulcus (mSTS), contralateral to a visual stream when coincident with an auditory stream, and BOLD decreases for noncoincidence relative to unisensory baselines. Contralateral primary visual cortex and auditory cortex were also affected by audiovisual temporal correspondence or noncorrespondence, as confirmed in individuals. Connectivity analyses indicated enhanced influence from mSTS on primary sensory areas, rather than vice versa, during audiovisual correspondence. Temporal correspondence between auditory and visual streams affects a network of both multisensory ( mSTS) and sensory-specific areas in humans, including even primary visual and auditory cortex, with stronger responses for corresponding and thus related audiovisual inputs
The complete genome sequence and genetic analysis of Ξ¦CA82 a novel uncultured microphage from the turkey gastrointestinal system
The genomic DNA sequence of a novel enteric uncultured microphage, Ξ¦CA82 from a turkey gastrointestinal system was determined utilizing metagenomics techniques. The entire circular, single-stranded nucleotide sequence of the genome was 5,514 nucleotides. The Ξ¦CA82 genome is quite different from other microviruses as indicated by comparisons of nucleotide similarity, predicted protein similarity, and functional classifications. Only three genes showed significant similarity to microviral proteins as determined by local alignments using BLAST analysis. ORF1 encoded a predicted phage F capsid protein that was phylogenetically most similar to the Microviridae Ξ¦MH2K member's major coat protein. The Ξ¦CA82 genome also encoded a predicted minor capsid protein (ORF2) and putative replication initiation protein (ORF3) most similar to the microviral bacteriophage SpV4. The distant evolutionary relationship of Ξ¦CA82 suggests that the divergence of this novel turkey microvirus from other microviruses may reflect unique evolutionary pressures encountered within the turkey gastrointestinal system
Energy Restriction during Childhood and Early Adulthood and Ovarian Cancer Risk
Dietary energy restriction may protect against cancer. In parts of the Netherlands, mostly in larger cities, periods of chronically impaired nutrition and even severe famine (Hunger Winter 1944β1945) existed during the 1930s and World War II (1940β1945). We studied the association between energy restriction during childhood and early adulthood on the risk of ovarian cancer later in life. In 1986, the Netherlands Cohort Study was initiated. A self-administered questionnaire on dietary habits and other cancer risk factors was completed by 62,573 women aged 55β69 years at baseline. Follow-up for cancer was established by record linkage to the Netherlands Cancer Registry. After 16.3 years of follow-up, 364 invasive epithelial ovarian cancer cases and 2220 subcohort members (sampled from the total cohort directly after baseline) with complete information confounders were available for case-cohort analyses. In multivariable analysis, ovarian cancer risk was lower for participants with an unemployed father during the 1930s (Hazard Ratio (HR), 0.70; 95% Confidence Interval (CI), 0.47β1.06) compared to participants with an employed father as well as for participants living in a city during World War II (HR, 0.69; 95% CI, 0.54β0.90) compared to participants living in the country-side. Residence in a Western City during the famine (Hunger Winter) was not associated with a decreased risk. Our results show a relation between proxy variables for modest energy restriction over a longer period of time during childhood or early adulthood and a reduced ovarian cancer risk
Metagenomes of the Picoalga Bathycoccus from the Chile Coastal Upwelling
Among small photosynthetic eukaryotes that play a key role in oceanic food webs, picoplanktonic Mamiellophyceae such as Bathycoccus, Micromonas, and Ostreococcus are particularly important in coastal regions. By using a combination of cell sorting by flow cytometry, whole genome amplification (WGA), and 454 pyrosequencing, we obtained metagenomic data for two natural picophytoplankton populations from the coastal upwelling waters off central Chile. About 60% of the reads of each sample could be mapped to the genome of Bathycoccus strain from the Mediterranean Sea (RCC1105), representing a total of 9 Mbp (sample T142) and 13 Mbp (sample T149) of non-redundant Bathycoccus genome sequences. WGA did not amplify all regions uniformly, resulting in unequal coverage along a given chromosome and between chromosomes. The identity at the DNA level between the metagenomes and the cultured genome was very high (96.3% identical bases for the three larger chromosomes over a 360 kbp alignment). At least two to three different genotypes seemed to be present in each natural sample based on read mapping to Bathycoccus RCC1105 genome
Altered gene expression and DNA damage in peripheral blood cells from Friedreich's ataxia patients: Cellular model of pathology
The neurodegenerative disease Friedreich's ataxia (FRDA) is the most common autosomal-recessively inherited ataxia and is caused by a GAA triplet repeat expansion in the first intron of the frataxin gene. In this disease, transcription of frataxin, a mitochondrial protein involved in iron homeostasis, is impaired, resulting in a significant reduction in mRNA and protein levels. Global gene expression analysis was performed in peripheral blood samples from FRDA patients as compared to controls, which suggested altered expression patterns pertaining to genotoxic stress. We then confirmed the presence of genotoxic DNA damage by using a gene-specific quantitative PCR assay and discovered an increase in both mitochondrial and nuclear DNA damage in the blood of these patients (p<0.0001, respectively). Additionally, frataxin mRNA levels correlated with age of onset of disease and displayed unique sets of gene alterations involved in immune response, oxidative phosphorylation, and protein synthesis. Many of the key pathways observed by transcription profiling were downregulated, and we believe these data suggest that patients with prolonged frataxin deficiency undergo a systemic survival response to chronic genotoxic stress and consequent DNA damage detectable in blood. In conclusion, our results yield insight into the nature and progression of FRDA, as well as possible therapeutic approaches. Furthermore, the identification of potential biomarkers, including the DNA damage found in peripheral blood, may have predictive value in future clinical trials
Aggravation of Chronic Stress Effects on Hippocampal Neurogenesis and Spatial Memory in LPA1 Receptor Knockout Mice
The lysophosphatidic acid LPAβ receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPAβ receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory.Male LPAβ-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice.These results reveal that the absence of the LPAβ receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPAβ receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology
Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps
Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR)
- β¦