91 research outputs found

    Effects of the El Niño-Southern Oscillation on dengue epidemics in Thailand, 1996-2005

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite intensive vector control efforts, dengue epidemics continue to occur throughout Southeast Asia in multi-annual cycles. Weather is considered an important factor in these cycles, but the extent to which the El Niño-Southern Oscillation (ENSO) is a driving force behind dengue epidemics remains unclear.</p> <p>Methods</p> <p>We examined the temporal relationship between El Niño and the occurrence of dengue epidemics, and constructed Poisson autoregressive models for incidences of dengue cases. Global ENSO records, dengue surveillance data, and local meteorological data in two geographically diverse regions in Thailand (the tropical southern coastal region and the northern inland mountainous region) were analyzed.</p> <p>Results</p> <p>The strength of El Niño was consistently a predictor for the occurrence of dengue epidemics throughout time lags from 1 to 11 months in the two selected regions of Thailand. Up to 22% (in 8 northern inland mountainous provinces) and 15% (in 5 southern tropical coastal provinces) of the variation in the monthly incidence of dengue cases were attributable to global ENSO cycles. Province-level predictive models were fitted using 1996-2004 data and validated with out-of-fit data from 2005. The multivariate ENSO index was an independent predictor in 10 of the 13 studied provinces.</p> <p>Conclusion</p> <p>El Niño is one of the important driving forces for dengue epidemics across the geographically diverse regions of Thailand; however, spatial heterogeneity in the effect exists. The effects of El Niño should be taken into account in future epidemic forecasting for public health preparedness.</p

    Population Dynamics of Aedes aegypti and Dengue as Influenced by Weather and Human Behavior in San Juan, Puerto Rico

    Get PDF
    Previous studies on the influence of weather on Aedes aegypti dynamics in Puerto Rico suggested that rainfall was a significant driver of immature mosquito populations and dengue incidence, but mostly in the drier areas of the island. We conducted a longitudinal study of Ae. aegypti in two neighborhoods of the metropolitan area of San Juan city, Puerto Rico where rainfall is more uniformly distributed throughout the year. We assessed the impacts of rainfall, temperature, and human activities on the temporal dynamics of adult Ae. aegypti and oviposition. Changes in adult mosquitoes were monitored with BG-Sentinel traps and oviposition activity with CDC enhanced ovitraps. Pupal surveys were conducted during the drier and wetter parts of the year in both neighborhoods to determine the contribution of humans and rains to mosquito production. Mosquito dynamics in each neighborhood was compared with dengue incidence in their respective municipalities during the study. Our results showed that: 1. Most pupae were produced in containers managed by people, which explains the prevalence of adult mosquitoes at times when rainfall was scant; 2. Water meters were documented for the first time as productive habitats for Ae. aegypti; 3. Even though Puerto Rico has a reliable supply of tap water and an active tire recycling program, water storage containers and discarded tires were important mosquito producers; 4. Peaks in mosquito density preceded maximum dengue incidence; and 5. Ae. aegypti dynamics were driven by weather and human activity and oviposition was significantly correlated with dengue incidence

    The Role of Human Movement in the Transmission of Vector-Borne Pathogens

    Get PDF
    Vector-borne diseases constitute a largely neglected and enormous burden on public health in many resource-challenged environments, demanding efficient control strategies that could be developed through improved understanding of pathogen transmission. Human movement—which determines exposure to vectors—is a key behavioral component of vector-borne disease epidemiology that is poorly understood. We develop a conceptual framework to organize past studies by the scale of movement and then examine movements at fine-scale—i.e., people going through their regular, daily routine—that determine exposure to insect vectors for their role in the dynamics of pathogen transmission. We develop a model to quantify risk of vector contact across locations people visit, with emphasis on mosquito-borne dengue virus in the Amazonian city of Iquitos, Peru. An example scenario illustrates how movement generates variation in exposure risk across individuals, how transmission rates within sites can be increased, and that risk within sites is not solely determined by vector density, as is commonly assumed. Our analysis illustrates the importance of human movement for pathogen transmission, yet little is known—especially for populations most at risk to vector-borne diseases (e.g., dengue, leishmaniasis, etc.). We outline several important considerations for designing epidemiological studies to encourage investigation of individual human movement, based on experience studying dengue

    ERP evidence for different strategies in the processing of case markers in native speakers and non-native learners

    Get PDF
    BACKGROUND: The present experiments were designed to test how the linguistic feature of case is processed in Japanese by native and non-native listeners. We used a miniature version of Japanese as a model to compare sentence comprehension mechanisms in native speakers and non-native learners who had received training until they had mastered the system. In the first experiment we auditorily presented native Japanese speakers with sentences containing incorrect double nominatives and incorrect double accusatives, and with correct sentences. In the second experiment we tested trained non-natives with the same material. Based on previous research in German we expected an N400-P600 biphasic ERP response with specific modulations depending on the violated case and whether the listeners were native or non-native. RESULTS: For native Japanese participants the general ERP response to the case violations was an N400-P600 pattern. Double accusatives led to an additional enhancement of the P600 amplitude. For the learners a native-like P600 was present for double accusatives and for double nominatives. The additional negativity, however, was present in learners only for double nominative violations, and it was characterized by a different topographical distribution. CONCLUSION: The results indicate that native listeners use case markers for thematic as well as syntactic structure building during incremental sentence interpretation. The modulation of the P600 component for double accusatives possibly reflects case specific syntactic restrictions in Japanese. For adult language learners later processes, as reflected in the P600, seem to be more native-like compared to earlier processes. The anterior distribution of the negativity and its selective emergence for canonical sentences were taken to suggest that the non-native learners resorted to a rather formal processing strategy whereby they relied to a large degree on the phonologically salient nominative case marker

    Estimating Dengue Transmission Intensity from Sero-Prevalence Surveys in Multiple Countries

    Get PDF
    BACKGROUND:Estimates of dengue transmission intensity remain ambiguous. Since the majority of infections are asymptomatic, surveillance systems substantially underestimate true rates of infection. With advances in the development of novel control measures, obtaining robust estimates of average dengue transmission intensity is key for assessing both the burden of disease from dengue and the likely impact of interventions. METHODOLOGY/PRINCIPAL FINDINGS:The force of infection (λ) and corresponding basic reproduction numbers (R0) for dengue were estimated from non-serotype (IgG) and serotype-specific (PRNT) age-stratified seroprevalence surveys identified from the literature. The majority of R0 estimates ranged from 1-4. Assuming that two heterologous infections result in complete immunity produced up to two-fold higher estimates of R0 than when tertiary and quaternary infections were included. λ estimated from IgG data were comparable to the sum of serotype-specific forces of infection derived from PRNT data, particularly when inter-serotype interactions were allowed for. CONCLUSIONS/SIGNIFICANCE:Our analysis highlights the highly heterogeneous nature of dengue transmission. How underlying assumptions about serotype interactions and immunity affect the relationship between the force of infection and R0 will have implications for control planning. While PRNT data provides the maximum information, our study shows that even the much cheaper ELISA-based assays would provide comparable baseline estimates of overall transmission intensity which will be an important consideration in resource-constrained settings

    Human Endometrial CD98 Is Essential for Blastocyst Adhesion

    Get PDF
    BACKGROUND: Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. METHODS AND PRINCIPAL FINDINGS: Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. CONCLUSIONS: These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window

    Glial Tumor Necrosis Factor Alpha (TNFα) Generates Metaplastic Inhibition of Spinal Learning

    Get PDF
    Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury

    Expanding frontiers in materials chemistry and physics with multiple anions

    Get PDF
    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials
    corecore