27 research outputs found

    Effects of ranolazine on astrocytes and neurons in primary culture

    Get PDF
    Ranolazine (Rn) is an antianginal agent used for the treatment of chronic angina pectoris when angina is not adequately controlled by other drugs. Rn also acts in the central nervous system and it has been proposed for the treatment of pain and epileptic disorders. Under the hypothesis that ranolazine could act as a neuroprotective drug, we studied its effects on astrocytes and neurons in primary culture. We incubated rat astrocytes and neurons in primary cultures for 24 hours with Rn (10−7, 10−6 and 10−5 M). Cell viability and proliferation were measured using trypan blue exclusion assay, MTT conversion assay and LDH release assay. Apoptosis was determined by Caspase 3 activity assay. The effects of Rn on proinflammatory mediators IL-β and TNF-α was determined by ELISA technique, and protein expression levels of Smac/Diablo, PPAR-γ, Mn-SOD and Cu/Zn-SOD by western blot technique. In cultured astrocytes, Rn significantly increased cell viability and proliferation at any concentration tested, and decreased LDH leakage, Smac/Diablo expression and Caspase 3 activity indicating less cell death. Rn also increased anti-inflammatory PPAR-γ protein expression and reduced pro-inflammatory proteins IL-1 β and TNFα levels. Furthermore, antioxidant proteins Cu/Zn-SOD and Mn-SOD significantly increased after Rn addition in cultured astrocytes. Conversely, Rn did not exert any effect on cultured neurons. In conclusion, Rn could act as a neuroprotective drug in the central nervous system by promoting astrocyte viability, preventing necrosis and apoptosis, inhibiting inflammatory phenomena and inducing anti-inflammatory and antioxidant agents

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Targeting ion channels for cancer treatment : current progress and future challenges

    Get PDF

    The NA(v)1.7 blocker protoxin II reduces burn injury-induced spinal nociceptive processing

    Get PDF
    Controlling pain in burn-injured patients poses a major clinical challenge. Recent findings suggest that reducing the activity of the voltage-gated sodium channel Nav1.7 in primary sensory neurons could provide improved pain control in burn-injured patients. Here, we report that partial thickness scalding-type burn injury on the rat paw upregulates Nav1.7 expression in primary sensory neurons 3 h following injury. The injury also induces upregulation in phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB), a marker for nociceptive activation in primary sensory neurons. The upregulation in p-CREB occurs mainly in Nav1.7-immunopositive neurons and exhibits a peak at 5 min and, following a decline at 30 min, a gradual increase from 1 h post-injury. The Nav1.7 blocker protoxin II (ProTxII) or morphine injected intraperitoneally 15 min before or after the injury significantly reduces burn injury-induced spinal upregulation in phosphorylated serine 10 in histone H3 and phosphorylated extracellular signal-regulated kinase 1/2, which are both markers for spinal nociceptive processing. Further, ProTxII significantly reduces the frequency of spontaneous excitatory post-synaptic currents in spinal dorsal horn neurons following burn injury. Together, these findings indicate that using Nav1.7 blockers should be considered to control pain in burn injury

    Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits

    Get PDF
    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for “closing the loop” is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm
    corecore