85 research outputs found

    Acquired resistance of leukemic cells to AraC is associated with the upregulation of aldehyde dehydrogenase 1 family member A2.

    Get PDF
    The elucidation of drug resistance mechanisms is important in the development of clinical therapies for the treatment of leukemia. To study the drug resistance mechanisms, protein expression profiles of 1-β-D-arabinofuranosylcytosine (AraC)-sensitive K562 (K562S) cells and AraC-resistant K562 (K562AC) cells were compared using two-dimensional fluorescence difference gel electrophoresis. In a comparison of protein expression profiles, 2073 protein spots were found to be altered, and 15 proteins of them were remarkably altered. These proteins were identified by mass spectrometry. The most differently expressed proteins were aldehyde dehydrogenase 1 family member A2 (ALDH1A2) and vimentin. Both proteins were verified using reverse transcriptase polymerase chain reaction and Western blot analysis. ALDH1A2 protein was found to be effective in AraC resistance. ALDH1A2 knock-down induced sensitivity to AraC treatment in K562AC cells, and ALDH1A2 overexpressed K562S cells acquired the AraC resistance. Furthermore, the findings also suggest that ALDH1A2 expression is increased after the appearance of AraC resistance in clinical cases. These results will be helpful in understanding the mechanism of AraC resistance

    Postazacitidine clone size predicts long-term outcome of patients with myelodysplastic syndromes and related myeloid neoplasms

    Get PDF
    Azacitidine is a mainstay of therapy for MDS-related diseases. The purpose of our study is to elucidate the effect of gene mutations on hematological response and overall survival (OS), particularly focusing on their post-treatment clone size. We enrolled a total of 449 patients with MDS or related myeloid neoplasms. They were analyzed for gene mutations in pre- (n=449) and post- (n=289) treatment bone marrow samples using targeted-capture sequencing to assess the impact of gene mutations and their post-treatment clone size on treatment outcomes. In Cox proportional hazard modeling, multi-hit TP53 mutation (HR, 2.03; 95% CI, 1.42-2.91; P<.001), EZH2 mutation (HR, 1.71; 95% CI, 1.14-2.54; P=.009), and DDX41 mutations (HR, 0.33; 95% CI, 0.17-0.62; P<.001), together with age, high-risk karyotypes, low platelet, and high blast counts, independently predicted OS. Post-treatment clone size accounting for all drivers significantly correlated with International Working Group (IWG)-response (P<.001, trend test), except for that of DDX41-mutated clones, which did not predict IWG-response. Combined, IWG-response and post-treatment clone size further improved the prediction of the original model and even that of a recently proposed molecular prediction model, IPSS-M (c-index, 0.653 vs 0.688; P<.001, likelihood ratio test). In conclusion, evaluation of post-treatment clone size, together with pre-treatment mutational profile as well as IWG-response have a role in better prognostication of azacitidine-treated myelodysplasia patients

    Amplified EPOR/JAK2 Genes Define a Unique Subtype of Acute Erythroid Leukemia

    Get PDF
    ゲノム解析から急性赤白血病の変異プロファイルと治療標的を解明 --特定の遺伝子変異群の組み合わせと、特徴となる遺伝子の増幅が鍵--. 京都大学プレスリリース. 2022-08-05.Acute erythroid leukemia (AEL) is a unique subtype of acute myeloid leukemia characterized by prominent erythroid proliferation whose molecular basis is poorly understood. To elucidate the underlying mechanism of erythroid proliferation, we analyzed 121 AEL using whole-genome/exome and/or targeted-capture sequencing, together with transcriptome analysis of 21 AEL samples. Combining publicly available sequencing data, we found a high frequency of gains/amplifications involving EPOR/JAK2 in TP53-mutated cases, particularly those having >80% erythroblasts designated as pure erythroid leukemia (10/13). These cases were frequently accompanied by gains/amplifications of ERG/ETS2 and associated with a very poor prognosis, even compared with other TP53-mutated AEL. In addition to activation of the STAT5 pathway, a common feature across all AEL cases, these AEL cases exhibited enhanced cell proliferation and heme metabolism and often showed high sensitivity to ruxolitinib in vitro and in xenograft models, highlighting a potential role of JAK2 inhibition in therapeutics of AEL

    Pitavastatin suppresses diethylnitrosamine-induced liver preneoplasms in male C57BL/KsJ-db/db obese mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity and related metabolic abnormalities, including inflammation and lipid accumulation in the liver, play a role in liver carcinogenesis. Adipocytokine imbalances, such as decreased serum adiponectin levels, are also involved in obesity-related liver tumorigenesis. In the present study, we examined the effects of pitavastatin - a drug used for the treatment of hyperlipidemia - on the development of diethylnitrosamine (DEN)-induced liver preneoplastic lesions in C57BL/KsJ-<it>db/db </it>(<it>db/db</it>) obese mice.</p> <p>Methods</p> <p>Male <it>db/db </it>mice were administered tap water containing 40 ppm DEN for 2 weeks and were subsequently fed a diet containing 1 ppm or 10 ppm pitavastatin for 14 weeks.</p> <p>Results</p> <p>At sacrifice, feeding with 10 ppm pitavastatin significantly inhibited the development of hepatic premalignant lesions, foci of cellular alteration, as compared to that in the untreated group by inducing apoptosis, but inhibiting cell proliferation. Pitavastatin improved liver steatosis and activated the AMPK-α protein in the liver. It also decreased free fatty acid and aminotransferases levels, while increasing adiponectin levels in the serum. The serum levels of tumor necrosis factor (TNF)-α and the expression of <it>TNF-α </it>and <it>interleukin-6 </it>mRNAs in the liver were decreased by pitavastatin treatment, suggesting attenuation of the chronic inflammation induced by excess fat deposition.</p> <p>Conclusions</p> <p>Pitavastatin is effective in inhibiting the early phase of obesity-related liver tumorigenesis and, therefore, may be useful in the chemoprevention of liver cancer in obese individuals.</p

    Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes

    Get PDF
    Tumor protein p53 (TP53) is the most frequently mutated gene in cancer1,2. In patients with myelodysplastic syndromes (MDS), TP53 mutations are associated with high-risk disease3,4, rapid transformation to acute myeloid leukemia (AML)5, resistance to conventional therapies6–8 and dismal outcomes9. Consistent with the tumor-suppressive role of TP53, patients harbor both mono- and biallelic mutations10. However, the biological and clinical implications of TP53 allelic state have not been fully investigated in MDS or any other cancer type. We analyzed 3,324 patients with MDS for TP53 mutations and allelic imbalances and delineated two subsets of patients with distinct phenotypes and outcomes. One-third of TP53-mutated patients had monoallelic mutations whereas two-thirds had multiple hits (multi-hit) consistent with biallelic targeting. Established associations with complex karyotype, few co-occurring mutations, high-risk presentation and poor outcomes were specific to multi-hit patients only. TP53 multi-hit state predicted risk of death and leukemic transformation independently of the Revised International Prognostic Scoring System (IPSS-R)11. Surprisingly, monoallelic patients did not differ from TP53 wild-type patients in outcomes and response to therapy. This study shows that consideration of TP53 allelic state is critical for diagnostic and prognostic precision in MDS as well as in future correlative studies of treatment response
    corecore