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INTRODUCTION
Attracting continuous attention of generations of hematol-

ogists due to its unique morphologic feature of conspicuous 
erythroid proliferation (1–6), acute erythroid leukemia (AEL) 
represents a rare subtype of acute myeloid leukemia (AML), 
accounting for 0.5% to 1.5% of AML cases (7, 8). Since it was 
first described (9, 10), the definition of AEL has undergone 
changes over time with frequent confusions with other AML 
categories and myelodysplastic syndromes (MDS). Accord-
ing to the previous classification system of the World Health 
Organization (WHO; WHO 2001), AEL included two major 
categories on the basis of their morphologic features: those 
having pure erythroid components (>80 of erythroblasts; pure 
erythroid leukemia, PEL) and those with more myeloid com-
ponents (≥50% and <80% erythroblasts and ≥20% myeloblasts 
in nonerythroid cells; erythroid/myeloid leukemia, EML; refs. 
2, 4). However, in the most recent revision of the WHO 

classification (11), the diagnosis of AEL has been revised to 
include only PEL, while excluding EML, with the latter now 
classified as other forms of either of AML or MDS, depend-
ing on the percentages of myeloblasts. Despite many histori-
cal changes and confusion regarding the definition of AEL, 
which often included other subtypes of AML, such as AML 
with myelodysplasia-related changes (AML-MRC) and AML 
not otherwise specified (AML-NOS; ref. 12), previous genetic 
studies have consistently demonstrated frequent mutations 
in TP53, NPM1, STAG2, transcription factors, and chromatin 
modifiers (13–18). However, also commonly mutated in non-
AEL cases (19), these mutations may not necessarily explain 
the unique erythroid-biased phenotype of AEL or the distinc-
tion between AEL and nonerythroid AML (non-AEL). For 
example, TP53 mutations, particularly multihit mutations in 
combination with extensive aneuploidy (20), are found in a 
wide variety of myeloid neoplasms, including AEL and other 
AML, MDS, and MDS/MPN, and are uniformly associated 

ABSTRACT Acute erythroid leukemia (AEL) is a unique subtype of acute myeloid leukemia 
characterized by prominent erythroid proliferation whose molecular basis is poorly 

understood. To elucidate the underlying mechanism of erythroid proliferation, we analyzed 121 AEL 
using whole-genome, whole-exome, and/or targeted-capture sequencing, together with transcriptome 
analysis of 21 AEL samples. Combining publicly available sequencing data, we found a high frequency of 
gains and amplifications involving EPOR/JAK2 in TP53-mutated cases, particularly those having >80% 
erythroblasts designated as pure erythroid leukemia (10/13). These cases were frequently accompa-
nied by gains and amplifications of ERG/ETS2 and associated with a very poor prognosis, even com-
pared with other TP53-mutated AEL. In addition to activation of the STAT5 pathway, a common feature 
across all AEL cases, these AEL cases exhibited enhanced cell proliferation and heme metabolism and 
often showed high sensitivity to ruxolitinib in vitro and in xenograft models, highlighting a potential role 
of JAK2 inhibition in therapeutics of AEL.

SIGNIFICANCE: This study reveals the major role of gains, amplifications, and mutations of EPOR and 
JAK2 in the pathogenesis of pure erythroleukemia. Their frequent response to ruxolitinib in patient-
derived xenograft and cell culture models highlights a possible therapeutic role of JAK2 inhibition for 
erythroleukemia with EPOR/JAK2-involving lesions.
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with a dismal prognosis, regardless of diagnosis (16, 18, 21). 
Moreover, the lack of promising druggable targets prevents 
improvement of the clinical outcome of AEL, although a 
potential role of hypomethylating agents and other com-
pounds has been discussed for TP53-mutated cases (22–24).

To clarify the mechanism of erythroid predominance in 
AEL and also identify molecular targets for the development 
of novel therapeutics for AEL, we enrolled a total of 124 AEL 
patients as per the WHO 2001 criteria and characterized their 
somatic mutations, copy-number alterations (CNA), struc-
tural variations (SV), and/or gene-expression profiles, which 
were compared with those in 409 cases non-AEL (WHO 2001) 
and 229 with MDS with excess blasts (MDS-EB; WHO 2017) 
cases without erythroid hyperplasia (see Methods section). 
We identified frequent focal gains and/or amplifications of 
genes implicated in erythroid proliferation and differentia-
tion, particularly EPOR and JAK2, which resulted in enhanced 
STAT5 signaling and promoted cell proliferation. Finally, we 
demonstrated a potential therapeutic role of JAK2 inhibition, 
using in vitro culture of AEL cell lines and in vivo AEL-derived 
patient-derived xenograft (PDX) models.

RESULTS
Unbiased Sequencing Analysis of AEL

To identify previously unknown genetic lesions in AEL, we 
first performed whole-genome sequencing (WGS; n = 20) and/
or whole-exome sequencing (WES; n = 27) in a subset (n = 35) 
of our AEL cases, including 6 PEL, 16 EML, and 13 other AEL 
cases. We identified a median of 0.569 and 0.504 SNVs/Mb/
sample and 6.75  ×  10−3 and 0 indels/Mb/sample in PEL and 
EML cases, respectively, which were largely comparable with the 
values previously reported for the TCGA AML cases (7). In total, 
58 genes were recurrently mutated in the coding regions, of 
which TP53 (n = 15), STAG2 (n = 6), KMT2A (n = 6), TET2 (n = 5), 
NPM1 (n = 5), and WT1 (n = 4) were most frequently affected 
(Supplementary Fig. S1A and S1B). A median of 20.5 SVs were 
detected in WGS, including large deletions, tandem duplica-
tions, and inversions. However, the number of SVs substantially 
differed between samples, ranging from 5 to 399 depending 
on the sample, where TP53-mutated samples had significantly 
higher numbers of SVs (median: 24/sample, range, 11–399) 
than TP53-intact samples (median: 15/sample, range, 5–26; 
P = 1.67 × 10−2; Supplementary Fig. S1C). TP53-mutated sam-
ples also had significantly higher numbers of CNAs (median: 
10.5/sample; range, 6–23) than unmutated samples (a median 
of 0/sample, range, 0–1) in copy-number (CN) analysis based 
on WGS/WES (P = 1.30 × 10−7). Of particular interest among 
these SVs and CNAs were focal gains/amplifications recurrently 
affecting the JAK2 (9p21), EPOR (19p13), and/or ERG/ETS2 
(21q22) loci (n = 5), because these genes are implicated in the 
regulation of erythroid differentiation/proliferation. Multiple 
loci were affected in seven cases (Supplementary Fig. S1B). In 
three cases, amplification of EPOR and ERG/ETS2 was associ-
ated with chromothripsis events involving both loci, as reported 
previously (ref. 25; Fig. 1A and B; Supplementary Fig. S2).

Genomic Landscape of AEL
To confirm these recurrent SNVs and SVs/CNAs detected 

in WGS/WES, we analyzed diagnostic samples from all 121 

AEL cases, together with 214 non-AEL cases, using targeted− 
capture sequencing with a mean depth of 557×  and 615×, 
respectively (Supplementary Figs. S1 and S3A; Supplementary 
Table  S1). Diagnosis of the 121 adult AEL cases was made 
according to the 2001 WHO classification, which included 13 
PEL and 82 EML cases, of which 3 turned out to be therapy-
related (26). Due to the lack of detailed information, the 
subcategories (PEL or EML) were not specified in the remain-
ing 26 cases (Supplementary Table S2). The target gene panel 
included a high-density bait set designed to sensitively capture 
focal gains/amplifications of EPOR, JAK2, and ERG/ETS2 loci, 
in addition to common mutations in myeloid neoplasms (refs. 
7, 8, 19, 27–29; Supplementary Table  S3). We also designed 
a number of baits to capture 1,216 SNP sites to enable 
sequencing−based genome-wide CN analysis (20). Combin-
ing an additional 3 AEL cases from the TCGA AML data set, 
the initial results were largely recapitulated, where mutations 
most frequently affected TP53 (40.3%), followed by STAG2 
(20.1%), KMT2A (20.2%), TET2 (16.9%), and NPM1 (14.5%; 
Fig.  2; Supplementary Fig.  S3B and S3C; Supplementary 
Table  S4). Also including an additional 195 non-AEL cases 
from TCGA, mutational profiles were shown to be substan-
tially different between AEL (n = 124) and non-AEL (n = 409) 
cases (Supplementary Table S1); TP53 and STAG2 mutations 
and KMT2A-PTD were overrepresented in AEL, whereas those 
affecting FLT3, NRAS, and DNMT3A were significantly under-
represented in AEL (Supplementary Fig.  S3D; Supplemen-
tary Table  S5). Conspicuously, accounting for 71.8% of all 
AEL cases, TP53, NPM1, and STAG2 mutations were almost 
mutually exclusive (Supplementary Fig.  S4A), and STAG2 
mutations showed a strong association with KMT2A-PTD 
and CEBPA mutations. Based on these mutually exclusive and 
cooccurring relationships, AEL cases were clustered into four 
genetically discrete groups, groups A−D (Fig. 2).

Genetic Feature of AEL Subgroups
Accounting for 40.3% (n  =  50) of the entire AEL cohort, 

group A is characterized by TP53 mutations. No germline 
TP53 mutations were detected in group A cases for which 
germline DNA was obtained (23 of 50). All group A cases 
accompanied complex karyotype (CK) and/or extensive 
CNAs (≥3), suggestive of CK (“CK-like”), which were rarely 
found in TP53-unmuated AEL cases. In line with a study 
in TP53-mutated MDS (20), most cases (n  =  46) had mul-
tihit TP53 lesions, including multiple mutations (n  =  14) 
and/or mutation(s) plus 17p loss of heterozygosity (LOH; 
n  =  33). TP53 mutations were also found in non-AEL AML 
but were much less common [32/409 (7.8%) in our cohort 
and 6.2% in a larger series; ref. 19]. Although the CN profile 
in TP53-mutated cases was largely similar between AEL and 
non-AEL with frequent involvement of  −5/del(5q) (69.3% 
vs. 68.8%), 17p LOH (67.3% vs. 71.9%), −7/del(7q) (66.7% vs. 
56.3%),  +21q (42.8% vs. 28.1%),  +8q (30.6% vs. 40.6%), and 
del(16q) (30.6% vs. 25%), several lesions, such as +19p (40.8% 
vs. 9.38%), +9p (32.7% vs. 3.13%), +19q (26.5% vs. 6.25%), and 
del(13q) (20.4% vs. 0%), were more frequently found in, and 
therefore characteristic of, TP53-mutated AEL cases (Fig. 3A 
and B; Supplementary Fig.  S4B; Supplementary Table  S6). 
Among these, however, gains/focal amplifications involving 
the EPOR (19p13), JAK2 (9p21), and ERG/ETS2 (21q22) loci 
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were almost exclusively found in group A, in which  ∼60% 
(29/50) of the patients harbored one or more of these lesions, 
whereas they were rarely found in other AEL cases (1/74; 
group B−D; Figs. 2 and 3A; Supplementary Fig. S5). In par-
ticular, those affecting EPOR and JAK2 were highly specific 
to TP53-mutated AEL and rarely found in non-AEL, even 
in TP53-mutated cases (25/50 vs. 4/32; P  =  7.49  ×  10−4). In 
qPCR analysis, these gains/focal amplifications of EPOR and 
JAK2 were significantly associated with overexpression of 
the affected genes (Fig. 3C). Moreover, we identified activat-
ing mutations in JAK2 (p.V617F) and EPOR (p.A364fs and 
p.G418*; refs. 30, 31) in three cases with TP53-mutated AEL, 
including two cases (UPN093 and UPN094) with concomi-
tant focal amplification/gain and activating EPOR mutations 
(Fig. 3D; Supplementary Fig. S5). Combined, these findings 
support that EPOR and JAK2 are the functional targets 
of gains/focal amplifications involving 19p and 9p, respec-
tively. Of note, both genes were more frequently affected 
by gains/focal amplifications in PEL with TP53 mutations 
than EML with TP53 mutations [EPOR: 10/12 (83%) vs. 9/29 
(31%), P  =  1.6  ×  10−2, and JAK2: 7/12 (67%) vs. 7/29 (24%), 

P = 6.8 × 10−2; Fig. 3E and F], suggesting their link to the PEL 
phenotype. Supporting this are three cases in which transfor-
mation from MDS to AEL was accompanied by increasing 
copy numbers of the EPOR locus (UPN089 and UPN105) or 
disappearance of 9p gain coincided with loss of AEL pheno-
type (UPN086; Supplementary Fig. S6A–S6C; Supplementary 
Table  S7). By contrast, gains/focal amplifications of ERG/
ETS2 were less specific to AEL and also found in non-AEL 
cases at a comparable frequency (Fig. 3G). Finally, we noted 
two cases with amplification and overexpression of MPL 
(Fig. 3H and I), also underscoring a role of upregulated JAK2/
STAT signaling in AEL pathogenesis.

Group B (n  = 18, 14.5%) was defined by the presence of 
NPM1 mutations (Fig.  2), including a case with NPM1–MLF1 
fusion associated with t(3;5)(q25;q34). Although NPM1 muta-
tions also define a unique molecular subtype among non-AEL 
cases (20%–30%; refs. 7, 8, 19), the profile of accompanying 
mutations substantially differed between AEL and non-AEL 
cases. Although representing the most frequent mutations 
accompanying NPM1-mutated non-AEL (55.4%; refs. 7, 
8, 19), FLT3 mutations were much less common (16.7%) in 

Figure 1.  Gain/amplification affecting chromosomes 9p, 19p, and 21q in AEL. A, Complex SVs affecting chromosomes 19 and 21 for a representa-
tive case (UPN091). Left, CNVs and SVs are shown along chromosome ideograms. Chromosomes 19 (Chr 19) and 21 (Chr 21) are highlighted. Chromo-
thripsis lesions involving chromosomes 19 and 21 are shown on the right. Yellow rectangles indicate the loci of EPOR and ERG/ETS2. B, An example of 
CNV (UPN093). The top and bottom panels show typical CN amplifications in chromosomes 9p, 19p, and 21q identified by WGS and the ideogram of the 
corresponding chromosomes.
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Figure 3.  AEL-specific genomic lesions in TP53-mutated erythroleukemia. A, Frequent gains/amplifications in chromosomes 9p, 19p, and 21q. CNAs 
were identified by targeted-capture sequencing/WES. The top and bottom panels show the ideogram of the corresponding chromosomes and the range 
of affected regions based on targeted-capture sequencing, respectively. Vertical light blue lines and yellow rectangles indicate commonly amplified 
regions and affected genes, respectively. The color gradient represents the TCN normalized by the TCF. Genes located in commonly amplified regions are 
shown in the lower part of each ideogram. B, Forest plot showing the differences of mutational profiles between AEL (n = 50) and non-AEL (n = 32) with 
TP53 mutation. Colors indicate affected lesions with >95% specificity for AEL (red) or >95% specificity for non-AEL (blue). Odds ratio and q-values are 
shown by the mark and color of forest plots. C, Association between DNA amplification and upregulation of expression. The results of RT-qPCR of AML 
samples with or without gains/amplifications of the indicated genes were compared. AEL and non-AEL are shown as purple and gray dots, respectively. 
Hollow dots indicate the cases with simple gain. GAPDH was used as an internal control. (continued on next page) 

NPM1-mutated AEL. Instead, PTPN11 mutations, which are 
less common in NPM1-mutated non-AEL, were found in 
50% of NPM1-mutated AEL cases (Supplementary Fig.  S7A 
and S7B; Supplementary Table S8). Of note, 9 of 11 PTPN11  
mutations in AEL were identified in NPM1-mutated cases 
(Fig. 2). These findings suggest that these AEL-specific co-occur-
ring mutations might have a significant impact on erythroid 
predominance in NPM1-mutated AEL, particularly, in EML.

Characterized by mutated STAG2, group C accounted for 
17.7% of all AEL cases (Fig.  2), the majority (n  =  17/22) of 
which had KMT2A-PTD. Conversely, 17 of 23 cases with 
KMT2A-PTD accompanied STAG2 mutations. Rarely found 
in STAG2-mutant non-AEL (1/16), KMT2A-PTD in combina-
tion with mutated STAG2 might be responsible for the AEL 
phenotype (Supplementary Fig.  S7C and S7D; Supplemen-
tary Table  S9). Other common mutations in group C cases 
included TET2 (31.8%), CEBPA (31.8%), and SRSF2 (22.7%; 
Supplementary Fig.  S7C), of which CEBPA mutations were 
highly enriched in this AEL subtype (7/22 vs. 1/102; Fig. 2).

None of the remaining 34 (27.4%) group D cases harbored 
mutations in TP53, STAG2, or NPM1. Most frequently mutated 
in these “triple-negative (TN)” cases were genes for chromatin/ 
histone modification (50.0%), including ASXL1, BCOR, 
KMT2A/2C, DNA methylation (47.1%), RNA splicing (32.3%), 
and RUNX1 and other transcription factors, and therefore 
correspond to chromatin/spliceosome-mutated AML (ref.  19; 
Supplementary Fig. S7E). Compared with similar TN-non-AEL, 
group D was enriched for mutations in BCOR, USP9X, PHF6, 
U2AF1, ASXL1, RUNX1, and TET2, of which USP9X and BCOR 
mutations showed the strongest enrichment; USP9X muta-
tions were observed in 5 of 34 cases with TN-AEL but found 
in 5 of 266 TN-non-AEL cases (q = 5.48 × 10−3; Supplementary 
Fig. S7F; Supplementary Table S10). In most cases, mutations 
were truncating (3 frameshift, 1 nonsense, 1 splice site, and 1 
missense; Supplementary Fig. S7G), suggesting that loss of its 
function might be implicated in the pathogenesis of TN-AEL.

To summarize, AEL comprises 4 categories that correspond 
to non-AEL counterparts characterized by mutated TP53 with 
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Figure 3. (Continued) D, EPOR-truncating mutations detected in the AEL cohort are indicated. E–G, Differential prevalence of frequent genetic 
events in TP53-mutated cases. The bar plot demonstrates frequencies of gains/amplifications in EPOR (E), JAK2 (F), and ERG/ETS2 (G) between PEL, 
EML, and non-AEL indicated by the red (focal gain/amplification) and pink (gain) box. H, CNAs detected by the CNACS algorithm of AEL with MPL ampli-
fications. The horizontal axis indicates each chromosome. The vertical axis indicates the TCN (top) and the allele-specific copy number (AsCN; bottom). 
Arrows indicate focal gains/amplifications, including JAK2 (chr 9) or MPL (chr 1). The magnified image of chromosome 9 of UPN121 is shown on the right. 
I, Association between DNA amplification and upregulation of expression. The results of RT-qPCR of AML samples with or without amplifications of MPL 
were compared. AEL and non-AEL are shown as purple and gray dots, respectively. GAPDH was used as an internal control.

aneuploidy, NPM1, and chromatin/spliceosome-mutated with 
or without STAG2 mutations. Each category has AEL-specific 
comutations/abnormalities, such as focal gains/amplification 
of EPOR/JAK2 with or without ERG/ETS2 lesions, PTPN11 
mutations, KMT2A-PTD, and USP9X and BCOR mutations, 
respectively. It should also be noted that many of our EML 
cases (61/82) had <20% total blasts and therefore classified as 
MDS according to the most updated WHO classification (11). 
In line with this, these cases showed a significant enrichment of 
mutations in the genes that were more frequently seen in MDS 
or secondary AML (sAML) than primary AML, such as those 
affecting TP53, STAG2, BCOR, ASXL1, and splicing factors (32, 
33). However, despite the similarity to MDS and MDS-derived 
sAML, these cases with <20% total blasts had distinct muta-
tional profiles compared with other MDS cases. Overall, EML 
cases with  <20% total blasts are enriched for mutations in 
CEBPA, IDH1, WT1, and STAG2, and KMT2A-PTD compared 
with 229 MDS-EB cases without erythroid hyperplasia (Sup-
plementary Fig.  S8A; Supplementary Table  S11). Moreover, 
TP53-, STAG2-, and NPM1-mutated EML cases with <20% total 
blasts were enriched for gains/amplifications of EPOR, JAK2, 
and other chromosomal lesions, KMT2A-PTD, and CEBPA 
mutations, and PTPN11 mutations, compared with respective 
MDS-EB cases without erythroid hyperplasia (Supplemen-
tary Fig.  S8B–S8D; Supplementary Tables  S12–S14). Also, a 
subset of patients with group D AEL with <20% total blasts 
had higher frequencies of mutations in USP9X, WT1, SF3B1, 
BCOR, and RUNX1 (Supplementary Fig. S8E; Supplementary 

Table S15). Thus, these AEL cases <20% of total blasts are con-
sidered genetically distinct from other MDS-EB cases without 
erythroid hyperplasia.

Gene-Expression Profile
To understand AEL pathogenesis in terms of gene expres-

sion, we analyzed transcriptome data of whole BM cells or PDX 
cells from 23 AEL samples (n = 21 from the in-house cohort 
and n  =  2 from TCGA cohort), which were compared with 
those from 213 non-AEL cases (Supplementary Table S1). As a 
whole, AEL showed a prominent upregulation of STAT5A tar-
get genes compared with non-AEL (Fig. 4A and B). The enrich-
ment of STAT5 target genes in AEL compared with non-AEL 
was significant, even when the comparison was made within 
individual subcategories of AEL and corresponding non-AEL, 
i.e., TP53-mutated, NPM1-mutated, STAG2-mutated, and other  
AEL and non-AEL cases (34, 35). The activated STAT5 in 
AEL was further confirmed by an enhanced phosphorylation 
of STAT5 in AEL-derived PDX cells in western blot analysis, 
compared with non–AEL-derived PDX cells (Fig.  4C). Other 
features of the AEL expression profile included an enhanced 
expression of gene sets implicated in mTORC1 signaling, 
erythroid differentiation, GATA1 target genes, heme metabo-
lism, cell proliferation, and DNA repair and downregulation 
of genes related to hematopoietic stem cells and multilineage 
progenitors (Fig.  4A). These features, including enhanced 
STAT5 signaling, were also observed when the comparison was 
made between individual AEL subtypes (group A, C, and D)  
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Figure 4.  Difference in RNA expression between AEL and non-AEL and between PEL and EML. A, Gene sets enrichment analysis of AEL (n = 23) vs. 
non-AEL (n = 213). Normalized enrichment scores (NES) between AEL and non-AEL using hallmark gene sets, gene sets involved in STAT5 targets, and 
erythroid differentiation with false discovery rate (FDR) q-value < 0.10. The comparison between AEL and non-AEL with TP53 mutation and STAG2 
mutation, and without TP53, NPM1, and STAG2 mutation are also shown. B, The results of gene set enrichment analysis (GSEA) using a gene set of STAT5 
targets are shown. C, Representative western blot results (experiments were performed in triplicate). Immunoblot shows the phosphorylation status of 
STAT5 in six non-AEL controls and five AEL with TP53 mutations. D, GSEA shows that compared with that of EML, the expression PEL is positively cor-
related with the gene set of Erythroid_Down (left) and negatively correlated with the gene set of Erythroid_UP (right).
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and their non-AEL counterparts (Fig.  4A). They were more 
pronounced in the cases with gains/amplifications of EPOR/
JAK2/ERG/ETS2 (n = 9), compared with those without gains/
amplifications of EPOR/JAK2/ERG/ETS2 (n = 4), even though 
they were still observed in the latter cases in comparison with 
TP53-mutated non-AEL cases.

Next, to understand the phenotypic difference between PEL 
and EML on the basis of gene expression, we compared gene-
expression profiles between PEL and EML. Because a promi-
nent proliferation of immature erythroblasts is a cardinal 
feature of PEL compared with EML, we first constructed two 
gene sets, which are most upregulated (Erythroid_Up; n = 200) 
and downregulated (Erythroid_Down; n = 200) during normal 

erythroid differentiation, respectively, according to a published 
gene-expression analysis of different stages of erythroblasts 
(ref.  36; Supplementary Table  S16). Then, we evaluated the 
enrichment of each gene set in the differentially expressed 
genes between PEL (n  =  5) and EML (n  =  16) samples. In 
agreement with the prominent maturation arrest in PEL, we 
observed a significant enrichment of the Erythroid_Up and 
Erythroid_Down gene sets in significantly upregulated and 
downregulated genes in PEL, respectively (Fig. 4D).

Prognostic Impacts of Common Genetic Lesions
As a whole, AEL cases exhibited a substantially shorter overall 

survival (OS) compared with non-AEL cases (Supplementary 
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Fig. S9A). However, this apparent difference in OS is largely 
explained by a higher representation of TP53-mutated cases 
in AEL (40.3 vs. 7.82%, respectively; Supplementary Fig. S3D); 
when the cohort was stratified by TP53 mutation status, no 
significant difference in OS was observed between AEL and 
non-AEL cases (Fig. 5A). Similarly, a significantly poorer prog-
nosis of PEL than EML (P = 1.44 × 10−3) is also explained by a 
significant enrichment of TP53-mutated cases in PEL (Fig. 5B; 
Supplementary Fig. S9B). Of note, all but one PEL case were 
classified into group A, suggesting that PEL is essentially 
exclusively a TP53-mutated disease with a dismal prognosis. 
Excluding the TP53-mutated subtype, other AEL subtypes 
(groups B–D) showed similar OS (Fig.  5C). No significant 
difference in OS was observed among AEL subtypes and their 
non-AEL counterparts, TP53-, STAG2-, and NPM1-mutated, 
and TN subtypes (Supplementary Fig.  S9C–S9E). Multivari-
able analysis of OS in the group A patients (see Methods for 

detail) revealed that age [>60 years; hazard ratio (HR): 3.00; 
95% CI, 1.57−5.73, P  =  8.63  ×  10−4) and gains and/or focal 
amplifications of the EPOR locus on 19p (HR: 1.95; 95% CI, 
1.10−3.46, P = 2.31 × 10−2) are the significantly independent 
predictors of a shorter OS (Fig.  5D and E; Supplementary 
Fig. S9F; Supplementary Table S17).

The negative effect of gains and/or focal amplifications 
on the EPOR locus within TP53-mutated AEL cases was also 
observed in the external cohort (18), although the platform 
used in the validation cohort failed to detect focal amplifica-
tions of EPOR and a substantial reduction of the statistical 
power was expected (Supplementary Fig. S9G and S9H).

Therapeutic Role of JAK2 Inhibition
On the basis of frequent gains/focal amplifications involv-

ing EPOR/JAK2 loci and STAT5 activation in AEL, we overex-
pressed EPOR and JAK2 in K562 and OCI-M2 cell lines using 

Figure 5.  Prognostic impacts of genetic lesions. A and B, OS distributions in AEL and non-AEL (A) and PEL and EML (B) divided by TP53 mutation sta-
tus. C, Kaplan–Meier survival curves are shown according to genetically clustered groups in the AEL cohort (A−D; Fig. 2). D, Kaplan–Meier survival curves 
are shown according to the presence or absence of EPOR gains/focal amplifications in TP53-mutated AEL. E, The result of multivariate analysis.
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lentivirus-mediated gene transfer, respectively, and evaluated 
the effect of the overexpression on STAT5 activation and eryth-
roid differentiation in terms of glycophorin A (GPA) expres-
sion. We chose these cell lines because K562 is known to have 
high expression of JAK2 (37), and OCI-M2 has a focal ampli-
fication and overexpression of EPOR (ref.  37; Supplementary 
Fig. S10A). When stimulated with erythropoietin, EPOR-trans-
duced K562 cells and OCI-M2 cells with and without JAK2 
overexpression showed enhanced STAT5 phosphorylation 
(Fig. 6A and B) and upregulated GPA expression (Fig. 6C and 
D). Moreover, erythropoietin-induced GPA expression in K562 
cells was suppressed by ruxolitinib in a dose-dependent man-
ner (Fig.  6E). Taken together, we conclude that EPOR/JAK2 
amplification contributes to STAT5 upregulation and eryth-
roid phenotype of AEL cells having EPOR/JAK2 amplifications.

The functional relevance of frequent gains and/or focal 
amplifications involving JAK and/or EPOR and consequent 
STAT5 activation as shown above prompted us to test a possi-
ble therapeutic role of JAK2 inhibition for AEL cases carrying 
these genetic lesions. For this purpose, we newly established 
six PDXs from TP53-mutated AEL patients harboring gains/
focal amplifications of JAK2/EPOR (PDX-UPN093, PDX-
UPN094, PDX-UPN097, PDX-UPN105, PDX-UPN118, and 
PDX-UPN121) and tested their sensitivity to ruxolitinib in 
vitro, also including two publicly available AEL-derived cell 
lines (AS-E2, ref. 38; TF-1, ref. 39) carrying mutated TP53 and 
gains/amplifications affecting the EPOR and/or JAK2 loci 
together with a non-AEL primary sample, PDXs, and cell lines 
(Fig. 6F; Supplementary Fig. S10B–S10I). No gains or ampli-
fications of EPOR or JAK2 were detected in non-AEL controls. 
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Figure 6.  EPOR–JAK2 signaling induces STAT5 activation and erythroid differentiation, and ruxolitinib suppresses the extent of proliferation and 
tyrosine phosphorylation of STAT5 induced by erythropoietin. A and B, Representative Western blot analysis for pSTAT5 expression in K562 cells with 
mock or EPOR overexpression (A) and OCI-M2 cells with mock or JAK2 overexpression (B) with or without erythropoietin (EPO) stimulation. B, The 
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When treated with different doses of ruxolitinib in vitro, all 
AEL-derived PDX cells and cell lines showed a higher response 
to JAK2 inhibition compared with non-AEL cells, based on sig-
nificantly smaller area under the curve (AUC; Fig. 6G and H). 
In accordance with this, downregulated STAT5 phosphoryla-
tion (pSTAT5) was observed in ruxolitinib-treated AS-E2 and 
TF-1 cells in association with growth inhibition (Fig. 6I), sup-
porting their dependence on activated JAK/STAT signaling.

We also investigated the therapeutic effects of JAK2 inhibi-
tion using in vivo xenograft models treated with ruxolitinib, in 
which six AEL-derived PDXs were transplanted into immunode-
ficient NOD/SCID/γC-null (NOG; ref. 40) mice subcutaneously 
or intravenously, followed by 90 mg/kg ruxolitinib or a vehicle 
twice daily for 50 days after engraftment. Subcutaneous tumor 
growth was dramatically suppressed by ruxolitinib treatment in 
four (PDX-UPN094, PDX-UPN121 PDX-UPN105, and PDX-
UPN121) of the five PDXs inoculated subcutaneously, where 
a prominent suppression of tumor growth (Fig. 7A and B) and 
a significantly prolonged survival (Fig.  7C) were observed. In 
agreement with this, an almost complete suppression of STAT5 
phosphorylation was observed in tumor cells from ruxolitinib-
treated mice transplanted in these four PDXs 6 hours after 
ruxolitinib treatment (Fig.  7D). Out of these four PDXs, two 
(PDX-UPN105 and PDX-UPN121) were also transplantable via 
intravenous inoculation, in which a substantial prolongation 
of survival was obtained with ruxolitinib treatment (Fig. 7E). 
By contrast, no growth suppression or prolongation of survival 
was observed in another subcutaneous model (PDX-UPN118; 
Fig.  7C). No prolongation of survival was obtained in PDX-
UPN093 (transplantable only with intravenous inoculation) 
either (Fig.  7E). In these two ruxolitinib-resistant lines, there 
was no (PDX-UPN118) or only partial (PDX-UPN093) reduc-
tion of pSTAT5, suggesting a close link between tumor sup-
pression and the suppression of STAT5 signaling on ruxolitinib 

treatment (Fig. 7D). PDX-UPN093 carried a highly amplified 
EPOR locus with a well-known activating mutation (p.G418X; 
Fig. 3D; Supplementary Fig. S10D). Moreover, another activat-
ing mutation (p.A364fs), although not amplified, was also seen 
in PDX-UPN094 (Fig.  3D; Supplementary Fig.  S10E), which 
showed a slightly elevated pSTAT5 (Fig. 7D). Of note, all mice 
transplanted with PDX-UPN094 eventually died due to break-
through tumor growth, despite a good initial response and a 
significantly prolonged survival. This suggests a possible role 
of concomitant activating EPOR mutations in resistance to 
ruxolitinib, although the mechanism of ruxolitinib resistance 
in the remaining PDX (PDX-UPN118) was still unknown with 
the lack of any accompanying mutations in the JAK/STAT 
signaling pathway. Taken together, these results suggest that 
inhibition of the JAK/STAT pathway might be a promising 
therapeutic strategy at least for a subset of TP53-mutated AEL 
with EPOR/JAK2 gains/focal amplification, although some 
cases do show ruxolitinib resistance.

DISCUSSION
Efforts to elucidate the unique pathophysiology of AEL 

based on extensive genome sequencing have successfully cata-
loged common genetic lesions in AEL (13–16), which has led 
to the identification of discrete genetic subclasses of AEL by 
Iacobucci and colleagues that are characterized by biallelic 
TP53 mutations, STAG2 and/or KMT2A-involving alterations, 
NPM1 mutations, DDX41 mutations, NUP98 rearrangements, 
and other lesions (18). We also confirmed these AEL sub-
classes together with their comutation patterns and impacts 
on survivals in our adult AEL cohort. Exceptions were DDX41-
mutated and NUP98-fusion+ subclasses, to which only one 
each case belonged in our cohort (Fig. 2). This was anticipated 
because of the rarity of DDX41-mutated AEL cases and that 
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Figure 6. (Continued) G and H, In vitro effects of ruxolitinib on the proliferation capacity of AEL (red) and non-AEL (black) primary/PDX deprived 
cells (solid) and cell line (dash; G). Dot plots show area under the curve (AUC) of ruxolitinib which are compared between AEL cells (from 6 PDX models 
and 2 AEL cell lines; TF-1 and AS-E2) and non-AEL cells (from a viable cell stock, 2 PDX models, and 3 non-AEL cell lines; MOLM-13, K562, and MV4-11). 
Data analyzed by the Wilcoxon rank-sum test (H). I, Representative Western blot results (experiments were performed in triplicate). In vivo effects of 
ruxolitinib on the JAK/STAT pathway in AEL cell lines.
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Figure 7.  In vivo effects of ruxolitinib on AEL PDX cells. A–C, In vivo effects 
of ruxolitinib on AEL PDX cells. Oral administration of ruxolitinib (90 mg/kg 
twice a day) or vehicle control started after tumor formation of subcutane-
ously transplanted PDX cells into NOG immunodeficient mice for 50 days. Size 
of subcutaneous tumors (A), representative photos (B), and overall survivals 
(C) of indicated models were compared between ruxolitinib and vehicle control 
groups. C, Kaplan–Meier plots of subcutaneously inoculated models were 
shown. The effect of ruxolitinib on tumor size of each time point was analyzed 
using the Wilcoxon rank-sum test. The prognostic impact of ruxolitinib on OS 
was calculated by log-rank test. D, Representative Western blot results (exper-
iments were performed in triplicate). In vivo effects of ruxolitinib on the JAK/
STAT pathway in AEL PDX cells. Paired PDX cells of AEL PDX models treated 
once with ruxolitinib (90 mg/kg) vs. vehicle control (0.5% methyl cellulose) 
were obtained 6 hours after the treatment. Immunoblot shows the phosphoryl-
ation status of STAT3/5 and ERK1/2 in the AEL PDX models. E, Kaplan–Meier 
plots of intravenously inoculated models were shown. The prognostic impact of 
ruxolitinib on OS was calculated by the log-rank test.
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the NUP98 fusion is highly specific to pediatric cases. However, 
we did confirm significantly elevated erythroblast counts in 
DDX41-mutated non-AEL cases compared with unmutated 
cases. We summarize similarities and differences in the results 
between the two studies in Supplementary Table S18.

However, despite the identification of major driver altera-
tions and AEL subclasses, the underlying genetic lesions that 
can explain the unique phenotype of abnormal erythroid 
proliferation in AEL have long remained to be elucidated in 
previous studies. Thus, the identification of frequent gains/
amplifications affecting genes for EPOR/MPL and their com-
mon downstream JAK2 signaling represents one of the major 
advances in the current study, given their undoubted func-
tional link to abnormal erythroid proliferation (31, 41). Highly 
specific to TP53-mutated AEL cases with complex karyotypes 
with or without chromothripsis, EPOR/JAK2-involving SVs 
and CN lesions, together with those affecting ERG/ETS2, are 
thought to be causatively related to genetic instability associ-
ated with biallelic TP53 mutation. In particular, EPOR/JAK2-
affecting gains/amplifications were highly enriched in PEL 
cases, compared with EML cases (10 or 77% of 13 PEL vs. 13 
or 16% of 82 EML; odds ratio = 16.9; 95% CI, 3.9–80.7), which 
are now defined as genuine AEL by the presence of >80% of 
erythroblasts and >30% proerythroblast in BM in the current 
WHO classification (WHO 2017; ref. 11). The strong pheno-
type–genotype link between EPOR gains/amplifications and 
marked erythroid hyperplasia may lead to the definition of a 
novel category of “EPOR-amplified myeloid neoplasm.”

Also implicated in erythroid proliferation and/or differentia-
tion (42–47), gains/amplifications of ERG/ETS2 were less spe-
cific to AEL and also found in non-AEL cases at a comparable 
frequency (Fig. 3G). However, when found in non-AEL, ERG/
ETS2 lesions tend to be associated with increased erythroblast 
counts (P  =  2.46  ×  10−2). In addition, ERG/ETS2-affecting 
lesions were more common in TP53-mutated PEL (7/12 or 58%) 
than TP53-mutated EML (11/29 or 38%) cases, in which highly 
associated with EPOR gains/amplifications (Fig.  3E and G). 
Thus, ERG/ETS2 lesions still seem to contribute to the hyper-
erythroid phenotypes in AEL. By contrast, the mechanism of 
erythroid proliferation in the remaining AEL cases is largely 
unclear. Given that an enhanced expression of STAT5 target 
genes was a common finding in AEL regardless of subgroup 
or genotype, abnormal erythroid proliferation in AEL could 
still be explained by activation of the JAK/STAT5 signaling 
pathway. In this regard, a strong correlation between STAG2 
mutations and KMT2A-PTD, which characterizes group C AEL 
cases, might provide insight into the mechanism of aberrant 
erythroid proliferation. Another lesion of potential interest 
is USP9X mutation recurrently found in a subset of group D 
cases, because USP9X has previously been reported to suppress 
the JAK/STAT pathway (48, 49). However, the exact mechanism 
of aberrant erythroid proliferation in other AEL cases is largely 
unclear, and further functional studies should be warranted.

Another major finding in our study is a possible role of 
JAK2 inhibition in the therapeutics of AEL cases with EPOR 
gains/amplifications, which have an especially poor progno-
sis, compared even with other TP53-mutated AEL and non-
AEL cases. Given the extremely dismal clinical outcomes of 
EPOR-amplified AEL cases, the efficacy of JAK2 kinase inhibi-
tion is worthwhile testing for these cases in a clinical setting. 

Moreover, the uniform activation of STAT5 in AELs may pre-
dict a role of JAK2 inhibition in other subtypes of AEL, includ-
ing group B to D cases. Nevertheless, we did observe ruxolitinib  
resistance in some PDX cases, where an activating EPOR 
mutation was implicated. Further investigations are required 
to confirm the effect of ruxolitinib in clinical settings and to 
elucidate the exact mechanism of ruxolitinib resistance.

Finally, despite a clear correlation between gains/amplifica-
tions/mutations of EPOR/JAK2, the mechanism of the charac-
teristic erythroid-dominant phenotype is still unclear for other 
AEL subclasses, where the majority of cases are EML, and the 
erythroid proliferation is less conspicuous than PEL. While 
sharing common class-defining mutations (i.e., mutated TP53 
with aneuploidy, NPM1, or STAG2 mutation), each genetic AEL 
subtype differs from the corresponding non-AEL counterpart 
with regard to comutation patterns, which therefore might 
explain the erythroid-dominant phenotype of AEL. For exam-
ple, gains/amplifications of EPOR/JAK2 in TP53-mutated cases, 
KMT2A-PTD in STAG2-mutated cases, and underrepresenta-
tion of FLT3-ITD and mutations and overrepresentation of 
PTPN11 in NPM1-mutated AEL might be of interest, together 
with recurrent USP9X mutations in TN cases. Elucidation of 
the mechanistic basis of their AEL phenotype in these sub-
classes is among the major challenges in further investigation.

METHODS
Patients

We collected 121 patients with AEL as per the criteria proposed 
by the WHO (WHO 2001; ref. 26), i.e., more than 80% erythroblasts 
(pure erythroid leukemia; PEL) or more than 50% of erythroblasts 
together with  >20% blasts (erythroid/myeloid leukemia; EML; Sup-
plementary Table S19). They included 13 PEL, 82 EML, and other 26 
cases, whose diagnostic details were unknown. Note that according to 
the most updated WHO classification (WHO 2017; ref. 11), the diag-
nosis in 61 EML cases should be revised to MDS-EB. We also included 
214 cases with non-AEL based on the same WHO 2001 criteria who 
had been enrolled at our collaborating institutes between July 1, 2017, 
and July 31, 2019, and agreed to participate in this study (Supplemen-
tary Tables S20 and S18). All participants provided written informed 
consent. In addition, we used the data set of major driver mutations 
and CNAs obtained from the targeted-capture sequencing in 229 
cases with MDS-EB (in WHO 2017) without erythroid hyperplasia 
to elucidate the difference in genetic profiles between AEL with <20% 
total blasts and MDS-EB without erythroid hyperplasia (see also 
below). These MDS-EB cases without erythroid hyperplasia were a 
subset of a larger cohort of MDS cases used in the previous study (50) 
and selected from the two different cohorts, including those from the 
JALSG MDS212 trial (51) and our own biobank at Kyoto University, 
which had been consecutively collected for studies on different topics 
from January 2013 to June 2018 and July 2017 to June 2021, respec-
tively. All samples analyzed in the study were obtained according to 
the protocols by the ethics board of each participating institution.

TCGA-LAML Data Set
In addition to these “in-house” cases, we also included the data set 

of the TCGA-LAML project (dbGaP Study Accession: phs000178.v11.
p8; ref. 7): published cases of 3 AEL and 195 non-AEL cases as per the 
WHO 2001 criteria, for which WES as well as RNA (2 AEL and 175 
non-AEL) sequencing data were available from TCGA (ref. 7; Supple-
mentary Table S1). Two cases with a diagnosis of FAB classification 
were unavailable and were omitted from the analysis. Bam files were 
obtained and analyzed using Genomon 2.
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This study was conducted in accordance with the Declaration of 
Helsinki and has been approved by the Ethics Committee of the Fac-
ulty of Medicine, Kyoto University.

In total, we included 124 AEL, 409 non-AEL, and 229 MDS-EB 
cases without erythroid hyperplasia in the current study.

The median age at enrollment of AEL, non-AEL, and MDS-EB 
cohorts was similar: 60 (21–87.1), 59 (17–90), and 72 (16–92) years, 
respectively. As for sex, the frequency of males is higher in AEL 
(74.2%) and MDS-EB (73%) without erythroid hyperplasia than in 
non-AEL AML (56.1%).

Power Analysis
No statistical methods were used to predetermine sample size. As 

the main aim of this study was to explore the genomic profile of AEL, 
we collected as many samples as possible.

Randomization
This study was performed in order to clarify the difference between 

AEL and non-AEL and between AEL and MDS-EB. Patients were 
divided according to diagnostic criteria. Thus, randomization was 
not performed.

As the aim of this study was to clarify the difference between AEL and 
non-AEL and between AEL and MDS-EB, blinding was not performed.

WGS/WES
We analyzed paired tumor and germline DNA from 35 AEL 

patients, including 6 PEL, 16 EML, and 13 other AEL cases, using 
WGS (n  =  20) and/or WES (n  =  27), which were performed as pre-
viously described (29, 52). Briefly, tumor and germline DNA was 
extracted from patients’ BM or peripheral blood mononuclear cells 
and from buccal mucosa, respectively, using the QIAamp DNA Mini 
Kit (QIAGEN, cat. #51304) according to the manufacturer’s instruc-
tions. Samples were subjected to massively parallel sequencing with 
150 bp paired-end reads using the HiSeq 2000, HiSeq2500, HiSeq X 
Ten, and/or NovaSeq 6000 according to the manufacturer’s instruc-
tions. Sequencing reads were aligned to NCBI Human Reference 
Genome Build 37 (hg19) by Burrows−Wheeler Aligner, version 0.7.10, 
with default parameters (http://bio-bwa.sourceforge.net/). PCR dupli
cates were eliminated using Picard tools version 1.39 (GATK). Muta-
tion calling was performed using the Empirical Bayesian Mutation 
Calling (EBCall) algorithm (53) with the following parameters:

	 (i)	 Mapping quality score ≥20
	(ii)	 Base quality score ≥15
	(iii)	 Both tumor and normal depths ≥8
	(iv)	 Number of variant reads in tumors ≥4
	 (v)	 VAFs in tumor samples ≥0.05
	(vi)	 VAFs in normal samples ≤0.2.

We used stringent criteria for mutation calling, requiring a P value 
(by EBCall) <10−4 and a Fisher P < 10−1.3, as determined by counting 
the number of reads with the reference base and the candidate single-
nucleotide variant (SNV) and short insertion/deletion (in/del) in 
both the tumor and normal samples as validated mutations.

The number of SV events of each sample analyzed by WGS is 
calculated using ClusterSV (54). Candidate mutations were filtered 
in the same manner as for WES analysis and included the following 
additional criteria.

	 (i)	 Mutations with ≥3 variant reads in tumor samples
	(ii)	 Synonymous SNVs and
	(iii)	 The exclusion of mutations with P ≥ 0.001 (EBCall).

Detection of structural variations was performed by Genomon SV 
as previously reported (55, 56). Briefly, Genomon SV used the infor-
mation from chimeric reads (containing breakpoints) and discordant 
read pairs, and reads were aligned to the assembled contig sequence 
containing the SV breakpoint (variant sequence) for each candidate 

SV. The Fisher exact test compared the proportion of the read pairs 
aligned to variant sequences relative to the reference sequences in 
tumor versus matched normal samples. Putative SVs were manually 
curated and filtered by removing those with

	 (i)	 Fisher exact P > 0.1;
	 (ii)	 <4 supporting reads in tumor samples;
	(iii)	 <0.05 variant allele frequency (VAF) in tumor samples;
	(iv)	 ≥0.02 VAF in matched normal samples; or
	 (v)	 <1,000 bp distance between breakpoints.

Targeted-Capture Sequencing
Subsequently, a total of 121 cases with AEL were screened for muta-

tions in 376 genes (Supplementary Table S3) associated with myeloid 
neoplasms (7, 8, 19, 27–29), erythroid differentiation process, and 
1,216 SNP sites for CN detection (20) by targeted-capture sequenc-
ing as previously described (27, 57). Briefly, DNA was enriched for 
target exons by liquid phase hybridization using the SureSelect 
custom kit (Agilent Technology). Sequencing reads were aligned as 
described for WGS/WES. Mutation calling was performed as previ-
ously reported (27, 57). Briefly, mutation calling was performed 
using our established pipeline Genomon 2 (http://genomon-project.
github.io/GenomonPages/), as previously reported (27, 57) using the 
following inclusion and exclusion parameters:

The candidates with the following criteria were included:

	 (i)	 Mapping quality score ≥20
	(ii)	 Base quality score ≥15
	(iii)	 Number of SNVs on the same read <5
	(iv)	 Number of insertions and deletions on the same read <2
	 (v)	 Number of total reads ≥20
	(vi)	 Number of variant reads ≥4
	(vii)	 VAFs ≥0.02

The candidates with the following criteria were excluded:

	 (i)	 Synonymous and ambiguous (unknown) variants
	(ii)	 Variants that read only from one direction
	(iii)	 Single-nucleotide substitutions in which other mutations were 

called at the same position and their VAFs were ≥0.1.

Further, SVs were called using the in-house pipeline Genomon SV 
(55, 56). Finally, candidates that fulfilled all the following criteria 
were adopted:

	 (i)	� The contig sequence aligned to the nucleotides to the left and 
right of the SV breakpoint pairs (maximum overhang ≥65 bp)

	(ii)	� The contig sequence aligned to the coding region of targeted genes
	(iii)	 They were not called in normal control samples
	(iv)	 They had an allele frequency ≥0.05.

Finally, mapping errors were removed by visual inspection on the Inte-
grative Genomics Viewer (IGV) browser (http://software.broadinstitute.
org/software/igv/). For 3 samples from 3 patients, amplified DNA was 
used for sequencing analysis.

Curation of the Oncogenic Variants
The detected candidate variations fulfilling the quality filter noted 

above were assumed to be “oncogenic” and were included in the subse-
quent analyses when these variants fulfilled one of the following criteria:

	 (i)	 Candidates that were registered in the Catalog of Somatic Muta-
tions in Cancer (COSMIC) v70 database ≥5 times in whole can-
cer tissues and/or ≥1 in the hematopoietic and lymphoid tissues 
at the given genomic positions and base substitutions.

	 (ii)	 Candidates that fulfill all Criteria 1 and at least one of the Criteria 2.

Criteria 1

a.	Candidates whose VAFs were ≥0.03.
b.	Candidates who were not registered in our in-house polymor-

phism database, NCBI dbSNP Build 131, or other public databases 
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(minor allele frequency >0.001), including ESP6500, the 1000 Ge-
nomes Project as of April 23, 2012, the Human Genome Variation 
Database, and the ExAC database.

c.	 EBCall >4.

Criteria 2

a.	Candidates who were located on the nonrepeat region with 
VAFs ≥0.03 <0.4 or ≥0.6 <0.98.

b.	Nonsense, frameshift, and splice-site candidates with VAFs ≥0.03.

Estimation of Tumor Cell Fractions
The tumor cell fraction (TCF) was estimated from the total copy-

number (TCN) of the region and the minor allele-specific CN (AsCN) 
using the following formula:

TCF = 2 × (1 − AsCN) × (2 − AsCN)    for deletions
TCF = 1 − AsCN    for UPD

The estimated TCF harboring the relevant mutation was calcu-
lated using the TCN of the region and the observed VAF value, as 
previously described.

Copy number of gains of tumor cell was calculated as follows (57):

(TCNgain − 2)/TCF + 2

Copy-Number Analysis
In addition to the evaluation of the conventional metaphase 

karyotyping, we developed a novel sequencing−based platform for 
copy−number analysis, named CNACS (58), which quantifies total 
copy numbers and allele-specific copy numbers based on sequencing 
depths and allelic ratios. Correction for multiple biases in CN signals 
allowed for higher resolution. By applying CNACS to sequencing 
data of patients’ genomic DNA, we detected copy-number changes 
and copy-neutral LOH mostly caused by uniparental disomy (UPD). 
In cases examined by CNACS, focal gain is defined as copy-number 
gain spanning less than 107 base pair regions, and amplification is 
defined as greater than a 2-fold increase (TCN >4). For CN analysis 
of WGS data, we applied the Control-FREEC algorithm as previously 
described (59).

RNA Sequencing
RNA sequencing was performed as previously described (58). 

Briefly, total RNA was extracted from the whole bone marrow (n = 59) 
of 21 AEL patients and 38 non-AEL patients using the RNeasy Micro 
Kit (QIAGEN; cat. #74004) according to the manufacturer’s instruc-
tions (Supplementary Table  S1). RNA sequencing libraries were 
prepared from polyA-selected RNA using the NEBNext Ultra RNA 
Library Prep kit for Illumina (New England BioLabs; cat. #E7370). 
Libraries were sequenced using the Illumina HiSeq 2500 platform 
with a standard 100 bp paired-end read protocol. Alignment to the 
human reference genome (hg19) and fusion detection was conducted 
by Genomon v2.6.3, using the following criteria:

	 (i)	 At least three spanning reads.
	 (ii)	 Junctions located at known exon–intron boundaries.
	(iii)	 Fusion transcripts of two different genes.

All genomic coordinates are based on GRCh37/hg19. For expression 
analysis, mapped reads were counted for each gene by our in-house 
Genomon Expression pipeline (http://github.com/Genomon-Project/
GenomonExpression). Gene-expression normalization and differential 
expression analysis were performed using the Bioconductor package 
DESeq2 (60). or gene set enrichment scores, weighted Kolmogorov–
Smirnov-like statistics were estimated, and empirical permutation 
tests by shuffling group labels of the samples were performed to evalu-
ate the significance of enrichment scores. Gene sets with q < 0.1 were 
considered significantly enriched.

Cell Lines
The cell line AS-E2 was generously provided by the originator, 

Yasushi Miyazaki (Nagasaki University). The other cell lines (K562, 
MOLM13, MV4-11, TF-1, OCI-M2, and 293T) were obtained from 
the ATCC. None of the cell lines used were authenticated. K562 
and MOLM13 were verified as Mycoplasma spp. negative using Myco-
ALERT (Lonza; cat. #LT07-218). The other cell lines were not tested. 
Experiments using cell lines were performed 1 week after thawing. 
We overexpressed EPOR and JAK2 in K562 and OCI-M2 cell lines 
using lentivirus-mediated gene transduction. For the generation of 
lentiviruses, 293T cells were transfected with the gene overexpression 
constructs, psPAX2 (Addgene; cat. #12260) and pMD2.G plasmid 
(Addgene; cat. #12259). Lentivirus for JAK2/EPOR overexpression 
was constructed by inserting JAK2/EPOR cDNA into the MCS of the 
CSII-EF backbone vector, which was provided by the RIKEN BRC 
through the National BioResource Project of the MEXT/AMED. 
Transfections in 293T cells were performed using Polyethylenimine 
MAX (Polysciences; cat. #24765-1) reagent at 4:3:1 ratios of vec-
tor: psPAX2: pMD2.G in OPTI-MEM solution (Thermo Fisher Sci-
entific; cat. #31985070). Viral supernatant was collected 36 hours 
and 48 hours after transfection and subjected to ultracentrifugation 
(20,000  ×  g for 5 hours.) to concentrate lentiviral particles. Each 
cDNA was synthesized at Eurofins Genomics K.K. The sequences 
of insert cDNA were provided in Supplementary Table  S21. Spin 
infections were performed at room temperature at 1,200  ×  g for 
120 minutes with polybrene reagent (Thermo Fisher Scientific; cat. 
#TR1003G) at a final concentration of 4 μg/mL.

Establishment of Xenograft Mouse Models
Animal care was in accordance with institutional guidelines and 

approved by the Animal Research Committee, Graduate School of 
Medicine, Kyoto University (Kyoto, Japan). Patient-derived xenograft 
(PDX) models were established by injecting bone marrow or periph-
eral blood mononucleated cells of AML patients into newborn NOG 
(NOD/SCID/IL2rγnull) mice (40), which were purchased from the 
Central Institute for Experimental Animals (Kawasaki, Japan). We 
also obtained PDX models from PRoXe (61).

In Vivo Drug Efficacy Test Using PDX Mouse Models
Six-week-old female NOD/SCID/γC-null (NOG) mice were used 

for drug efficacy tests. Animal care was in accordance with institu-
tional guidelines and approved by the Animal Research Committee, 
Graduate School of Medicine, Kyoto University (Kyoto, Japan). After 
confirming tumor engraftment, ruxolitinib (LC Laboratories; cat. 
#R-6600) or vehicle was given twice daily dose (90 mg/kg) via oral 
gavage for 50 days.

Inhibitor Assay
PDX cells and cell lines were plated at a density of 2–10 × 105 cells/

mL in 96-well plates (50  μL per well) with ruxolitinib or a vehicle 
(dimethyl sulfoxide, DMSO; Agilent, cat. #600260-53). After cultur-
ing in Iscove’s modified Dulbecco’s medium (IMDM; FUJIFILM  
Wako Pure Chemical Corporation; cat. #098-06465) with 2U human 
EPO (PeproTech; cat. #100-64), 20% FBS (Nichirei Biosciences; cat. 
#175012), and 1% penicillin–streptomycin (FUJIFILM Wako Pure 
Chemical Corporation; cat. #168-23191) at 37°C and 5% CO2 for 
3 days. Cell viability was assessed by quantification of ATP using 
CellTiter-Glo (Promega; cat. #G9242). The 4-parameter logistic 
regression models were used to assess the inhibitory effect of ruxoli-
tinib using Prism software (v6; GraphPad).

Immunoblotting
For the preparation of lysates, cells were harvested and lysed with 

RIPA buffer (Nacalai Tesque; cat. #16488-34) containing 50 mmol/L 
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Tris-HCL buffer, 150 mmol/L sodium chloride, 1% Nonidet(R) P40 
substitute, 0.5% deoxycholic acid sodium salt monohydrate, and 0.1% 
sodium dodecyl sulfate, supplemented with 1  ×  phosphatase inhibi-
tor cocktail (Nacalai Tesque; cat. #07574-61) at 4°C for 30 minutes 
with constant vortex every 3–5 minutes. The lysate was transferred 
to a microcentrifuge tube and centrifuged at  ∼150,000 rpm for 10 
minutes at 4°C, and the supernatant was transferred to a new micro-
centrifuge tube and discard the pellet. After boiled in Sample Buffer 
Solution with Reducing Reagent (6×) for SDS-PAGE (Nacalai Tesque; 
cat. #09499-14) at 95°C for 5 minutes, cell lysates were analyzed by 
western blotting using the following antibodies, which were purchased 
from Cell Signaling Technology and used at a 1:1,000 dilution: anti-
tyrosine phosphorylation (p) of STAT5A (cat. 4322S), anti-STAT5 
(9310), anti−p-p44/42 ERK1/2 (4370S), anti-p44/42 ERK1/2 (4695S), 
anti-pSTAT3 (9145), and anti-STAT3 (4904). Multiple independent 
blots were used, and for the blots of one experiment, the same amount 
of lysate was applied for each sample. For cell lines, TF-1 and AS-E2 
cells were treated with 2 U/mL erythropoietin (EPO (PeproTech; cat. 
#100-64)) for 10 minutes after serum starvation (1%) for 16 hours and 
exposure of 10−3 mol/L ruxolitinib or vehicle (DMSO; Agilent; cat. 
#600260-53) for 3 hours.

Measurement of Glycophorin A Expression
K562 were cultured in RPMI-1640 (Nacalai tesque; cat. #30264-56) 

with 10% FBS (Nichirei Biosciences; cat. #175012) with or without 
2 U/mL EPO (PeproTech; cat. #100-64), and OCI-M2 were cultured 
in IMDM (FUJIFILM Wako Pure Chemical Corporation; cat. #098-
06465) with 1% FBS with or without 1 U/mL EPO for 3 days. Percent-
ages of glycophorin A–positive cells were determined by glycophorin 
A–APC antibody [BD Biosciences; cat. #551336 clone: GA-R2 (HIR2)].

RT-qPCR
Reverse transcription of RNA was performed using the random 

hexamer and ReverTra Ace qPCR RT Kit (TOYOBO; cat. #FSQ-301). 
The PCR amplicon is designed to span over intron regions using 
NCBI Primer-BLAST. Quantitative PCR was performed in triplicate 
using TB Green Premix Ex Taq II (Takara; cat. #RR820A) on a CFX 
Connect Real-Time PCR Detection System. The detailed primer 
sequences for RT-qPCR are provided as follows:

GAPDH	 forward: 5′-AACGTGTCAGTGGTGGACCTG-3′; reverse: 5′- 
AGTGGGTGTCGCTGTTGAAGT-3′

JAK2	 forward: 5′-CACCTAAGAGACTTTGAAAGGGAAA-3′; reverse:  
5′-TTAGATTACGCCGACCAGCA-3′

EPOR	 forward: 5′-CGTATGGCTGAGCCGAGCTT-3′; reverse: 5′-AGC 
ACCAGGATGACCACGA-3′

ERG	 forward: 5′-CAACAAGTAGCCGCCTTGC-3′; reverse: 5′-ATCT 
TGAACTCCCCGTTGGT-3′

ETS2	 forward: 5′-GGAATCAAGAATATGGACCAGGTAG-3′; reverse:  
5′-ACCCATCAAAGGTGTCAAAGG-3′

MPL	 forward: 5′-GGTGAAGAATGTGTTCCTAAACCAG-3′; reverse:  
5′-CTCCTCCCAGCTGATCTGAAGT-3′

Statistical Analysis
Data are expressed as a mean  ±  95% confidence interval unless 

otherwise indicated. Pairwise comparisons were performed using the 
Wilcoxon rank-sum test for continuous variables and the two-sided 
Fisher exact test for categorical variables. Where zeros cause problems 
with the computation of the odds ratio, 0.5 is added to all values. The 
Kaplan–Meier method was used to analyze survival outcomes (OS) 
using the log-rank test or Cox proportional hazards model.

Multivariable analysis of OS was performed including 48 cases in 
group A, in which survival data were available, based on the Cox pro-
portional hazard model using the backward stepwise selection for vari-
able selection. In addition to age and sex, we included all the mutations 
and CNAs in the multivariable analysis, which were observed in >20% of 

group A cases and significant in univariate analysis (P < 0.05), i.e., age, 
sex, and gains/amplifications of EPOR locus on 19p (Supplementary 
Fig. S9F). All statistical analyses were performed using the R (http://
www.R-project.org) or STATA/IC (LightStone) ver. 13.1. Significance 
was determined at a two-sided  α-level of 0.05, except for P values in 
multiple comparisons, in which multiple tests were adjusted according 
to the method described by Benjamini and Hochberg (62). Methods of 
detailed statistical analyses are described in each section above.

Data Availability
Data sets of sequencing in samples with AEL are available in 

the European Genome−phenome Archive database (Accession ID: 
EGAS00001003696 and EGAS00001005810).
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