116 research outputs found

    Efficiency enhancement of axial junction InP single nanowire solar cells by dielectric coating

    Get PDF
    In this work we demonstrate single axial p-i-n junction InP nanowire (NW) solar cells grown by selective-area metal organic vapor phase epitaxy (SA-MOVPE) technique. A power conversion efficiency of up to 6.5% was realized in the single NW solar cell (horizontally lying on substrate) without any surface passivation. Electron beam induced current (EBIC) and photocurrent mapping were performed to investigate the electrical properties of the NW solar cells and their influence on device performance, which are essential for an in-depth understanding of the design requirements for NW solar cells. A further conformal SiNx layer was deposited on the single NW solar cell devices by plasma-enhanced chemical vapor deposition (PECVD). Overall efficiency improvement has been obtained in the SiNx-coated devices with a remarkable up to 62% increase to a peak efficiency of 10.5%, which to our knowledge is the highest efficiency reported for horizontal single NW solar cells. This has been attributed to an enhanced optical antenna effect and effective surface passivation due to SiNx coating, as respectively confirmed by numerical simulation and time-resolved photoluminescence (TRPL) measurements. Our work demonstrates that dielectric coating is a promising simple approach to achieve high performance III–V NW solar cells

    Cytokeratin 8/18 expression indicates a poor prognosis in squamous cell carcinomas of the oral cavity

    Get PDF
    BACKGROUND: Intermediary filaments are involved in cell motility and cancer progression. In a variety of organs, the expression of distinct intermediary filaments are associated with patient prognosis. In this study, we seeked to define the prognostic potential of cytokeratin and vimentin expression patterns in squamous cell carcinomas (SCC's) of the oral cavity. METHODS: 308 patients with histologically proven and surgically treated squamous cell carcinomas of the oral cavity were investigated for the immunohistochemical expression of a variety of intermediary filaments including high- and low-molecular weight cytokeratins (Ck's), such as Ck 5/6, Ck 8/18, Ck 1, CK 10, Ck 14, Ck 19 and vimentin, using the tissue microarray technique. Correlations between clinical features and the expression of Cytokeratins and vimentin were evaluated statistically by Kaplan-Meier curves and multivariate Cox regression analysis. RESULTS: The expression of Ck 8/18 and Ck 19 were overall significantly correlated with a poor clinical prognosis (Ck 8/18 p = 0.04; Ck19 p < 0.01). These findings could also be reproduced for Ck 8/18 in primary nodal-negative SCC's and held true in multivariate-analysis. No significant correlation with patient prognosis could be found for the expression of the other cytokeratins and for vimentin. CONCLUSION: The expression of Ck 8/18 in SCC's of the oral cavity is an independent prognostic marker and indicates a decreased overall and progression free survival. These results provide an extended knowledge about the role of intermediary filament expression patterns in SCC's

    TRIM16 acts as a tumour suppressor by inhibitory effects on cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells

    Get PDF
    The family of tripartite-motif (TRIM) proteins are involved in diverse cellular processes, but are often characterized by critical protein–protein interactions necessary for their function. TRIM16 is induced in different cancer types, when the cancer cell is forced to proceed down a differentiation pathway. We have identified TRIM16 as a DNA-binding protein with histone acetylase activity, which is required for the retinoic acid receptor β2 transcriptional response in retinoid-treated cancer cells. In this study, we show that overexpressed TRIM16 reduced neuroblastoma cell growth, enhanced retinoid-induced differentiation and reduced tumourigenicity in vivo. TRIM16 was only expressed in the differentiated ganglion cell component of primary human neuroblastoma tumour tissues. TRIM16 bound directly to cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells. TRIM16 reduced cell motility and this required downregulation of vimentin. Retinoid treatment and enforced overexpression caused TRIM16 to translocate to the nucleus, and bind to and downregulate nuclear E2F1, required for cell replication. This study, for the first time, demonstrates that TRIM16 acts as a tumour suppressor, affecting neuritic differentiation, cell migration and replication through interactions with cytoplasmic vimentin and nuclear E2F1 in neuroblastoma cells

    Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models

    Get PDF
    Failure of remyelination of multiple sclerosis (MS) lesions contributes to neurodegeneration that correlates with chronic disability in patients. Currently, there are no available treatments to reduce neurodegeneration, but one therapeutic approach to fill this unmet need is to promote remyelination. As many demyelinated MS lesions contain plentiful oligodendrocyte precursor cells (OPCs), but no mature myelinating oligodendrocytes, research has previously concentrated on promoting OPC maturation. However, some MS lesions contain few OPCs, and therefore, remyelination failure may also be secondary to OPC recruitment failure. Here, in a series of MS samples, we determined how many lesions contained few OPCs, and correlated this to pathological subtype and expression of the chemotactic molecules Semaphorin (Sema) 3A and 3F. 37 % of MS lesions contained low numbers of OPCs, and these were mostly chronic active lesions, in which cells expressed Sema3A (chemorepellent). To test the hypothesis that differential Sema3 expression in demyelinated lesions alters OPC recruitment and the efficiency of subsequent remyelination, we used a focal myelinotoxic mouse model of demyelination. Adding recombinant (r)Sema3A (chemorepellent) to demyelinated lesions reduced OPC recruitment and remyelination, whereas the addition of rSema3F (chemoattractant), or use of transgenic mice with reduced Sema3A expression increased OPC recruitment and remyelination. We conclude that some MS lesions fail to remyelinate secondary to reduced OPC recruitment, and that chemotactic molecules are involved in the mechanism, providing a new group of drug targets to improve remyelination, with a specific target in the Sema3A receptor neuropilin-1. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-013-1112-y) contains supplementary material, which is available to authorized users

    Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease

    Get PDF
    The FANTOM5 consortium utilised cap analysis of gene expression (CAGE) to provide an unprecedented insight into transcriptional regulation in human cells and tissues. In the current study, we have used CAGE-based transcriptional profiling on an extended dense time course of the response of human monocyte-derived macrophages grown in macrophage colony-stimulating factor (CSF1) to bacterial lipopolysaccharide (LPS). We propose that this system provides a model for the differentiation and adaptation of monocytes entering the intestinal lamina propria. The response to LPS is shown to be a cascade of successive waves of transient gene expression extending over at least 48 hours, with hundreds of positive and negative regulatory loops. Promoter analysis using motif activity response analysis (MARA) identified some of the transcription factors likely to be responsible for the temporal profile of transcriptional activation. Each LPS-inducible locus was associated with multiple inducible enhancers, and in each case, transient eRNA transcription at multiple sites detected by CAGE preceded the appearance of promoter-associated transcripts. LPS-inducible long non-coding RNAs were commonly associated with clusters of inducible enhancers. We used these data to re-examine the hundreds of loci associated with susceptibility to inflammatory bowel disease (IBD) in genome-wide association studies. Loci associated with IBD were strongly and specifically (relative to rheumatoid arthritis and unrelated traits) enriched for promoters that were regulated in monocyte differentiation or activation. Amongst previously-identified IBD susceptibility loci, the vast majority contained at least one promoter that was regulated in CSF1-dependent monocyte-macrophage transitions and/or in response to LPS. On this basis, we concluded that IBD loci are strongly-enriched for monocyte-specific genes, and identified at least 134 additional candidate genes associated with IBD susceptibility from reanalysis of published GWA studies. We propose that dysregulation of monocyte adaptation to the environment of the gastrointestinal mucosa is the key process leading to inflammatory bowel disease

    Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity

    Get PDF

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    Get PDF
    Aims  The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results  Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion  After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p
    corecore