762 research outputs found

    Cohomology for infinitesimal unipotent algebraic and quantum groups

    Full text link
    In this paper we study the structure of cohomology spaces for the Frobenius kernels of unipotent and parabolic algebraic group schemes and of their quantum analogs. Given a simple algebraic group GG, a parabolic subgroup PJP_J, and its unipotent radical UJU_J, we determine the ring structure of the cohomology ring H((UJ)1,k)H^\bullet((U_J)_1,k). We also obtain new results on computing H((PJ)1,L(λ))H^\bullet((P_J)_1,L(\lambda)) as an LJL_J-module where L(λ)L(\lambda) is a simple GG-module with high weight λ\lambda in the closure of the bottom pp-alcove. Finally, we provide generalizations of all our results to the quantum situation.Comment: 18 pages. Some proofs streamlined over previous version. Additional details added to some proofs in Section

    New compensation functions for efficient excitation of open planar circuits in SDM

    Get PDF

    Exploring the measurement of markedness and its relationship with other linguistic variables

    Get PDF
    Antonym pair members can be differentiated by each word's markedness-that distinction attributable to the presence or absence of features at morphological or semantic levels. Morphologically marked words incorporate their unmarked counterpart with additional morphs (e.g., "unlucky" vs. "lucky"); properties used to determine semantically marked words (e.g., "short" vs. "long") are less clearly defined. Despite extensive theoretical scrutiny, the lexical properties of markedness have received scant empirical study. The current paper employs an antonym sequencing approach to measure markedness: establishing markedness probabilities for individual words and evaluating their relationship with other lexical properties (e.g., length, frequency, valence). Regression analyses reveal that markedness probability is, as predicted, related to affixation and also strongly related to valence. Our results support the suggestion that antonym sequence is reflected in discourse, and further analysis demonstrates that markedness probabilities, derived from the antonym sequencing task, reflect the ordering of antonyms within natural language. In line with the Pollyanna Hypothesis, we argue that markedness is closely related to valence; language users demonstrate a tendency to present words evaluated positively ahead of those evaluated negatively if given the choice. Future research should consider the relationship of markedness and valence, and the influence of contextual information in determining which member of an antonym pair is marked or unmarked within discourse

    Monocytes/macrophages express chemokine receptor CCR9 in rheumatoid arthritis and CCL25 stimulates their differentiation

    Get PDF
    Available Gold OAAbstract Introduction Monocytes/macrophages accumulate in the rheumatoid (RA) synovium where they play a central role in inflammation and joint destruction. Identification of molecules involved in their accumulation and differentiation is important to inform therapeutic strategies. This study investigated the expression and function of chemokine receptor CCR9 in the peripheral blood (PB) and synovium of RA, non-RA patients and healthy volunteers. Methods CCR9 expression on PB monocytes/macrophages was analysed by flow cytometry and in synovium by immunofluorescence. Chemokine receptor CCR9 mRNA expression was examined in RA and non-RA synovium, monocytes/macrophages from PB and synovial fluid (SF) of RA patients and PB of healthy donors using the reverse transcription polymerase chain reaction (RT-PCR). Monocyte differentiation and chemotaxis to chemokine ligand 25 (CCL25)/TECK were used to study CCR9 function. Results CCR9 was expressed by PB monocytes/macrophages in RA and healthy donors, and increased in RA. In RA and non-RA synovia, CCR9 co-localised with cluster of differentiation 14+ (CD14+) and cluster of differentiation 68+ (CD68+) macrophages, and was more abundant in RA synovium. CCR9 mRNA was detected in the synovia of all RA patients and in some non-RA controls, and monocytes/macrophages from PB and SF of RA and healthy controls. CCL25 was detected in RA and non-RA synovia where it co-localised with CD14+ and CD68+ cells. Tumour necrosis factor alpha (TNFα) increased CCR9 expression on human acute monocytic leukemia cell line THP-1 monocytic cells. CCL25 induced a stronger monocyte differentiation in RA compared to healthy donors. CCL25 induced significant chemotaxis of PB monocytes but not consistently among individuals. Conclusions CCR9 expression by monocytes is increased in RA. CCL25 may be involved in the differentiation of monocytes to macrophages particularly in RA.Peer Reviewe

    Amyloid-β and α-Synuclein Decrease the Level of Metal-Catalyzed Reactive Oxygen Species by Radical Scavenging and Redox Silencing.

    Get PDF
    The formation of reactive oxygen species (ROS) is linked to the pathogenesis of neurodegenerative diseases. Here we have investigated the effect of soluble and aggregated amyloid-β (Aβ) and α-synuclein (αS), associated with Alzheimer's and Parkinson's diseases, respectively, on the Cu(2+)-catalyzed formation of ROS in vitro in the presence of a biological reductant. We find that the levels of ROS, and the rate by which ROS is generated, are significantly reduced when Cu(2+) is bound to Aβ or αS, particularly when they are in their oligomeric or fibrillar forms. This effect is attributed to a combination of radical scavenging and redox silencing mechanisms. Our findings suggest that the increase in ROS associated with the accumulation of aggregated Aβ or αS does not result from a particularly ROS-active form of these peptides, but rather from either a local increase of Cu(2+) and other ROS-active metal ions in the aggregates or as a downstream consequence of the formation of the pathological amyloid structures.This work was supported by the Villum Foundation (J.T.P., L.H.), the Lundbeck Foundation (J.T.P., K.T.), the Agency for Science, Technology and Research, Singapore (S.W.C.), The Wellcome Trust (C.M.D.) and the Spanish Ministry of Economy and Competitiveness through the Ramon y Cajal ́ program (N.C.).This is the final version of the article. It first appeared from the American Chemical Society via http://dx.doi.org/10.1021/jacs.5b1357

    Whole-genome sequencing to understand the genetic architecture of common gene expression and biomarker phenotypes.

    Get PDF
    Initial results from sequencing studies suggest that there are relatively few low-frequency (<5%) variants associated with large effects on common phenotypes. We performed low-pass whole-genome sequencing in 680 individuals from the InCHIANTI study to test two primary hypotheses: (i) that sequencing would detect single low-frequency-large effect variants that explained similar amounts of phenotypic variance as single common variants, and (ii) that some common variant associations could be explained by low-frequency variants. We tested two sets of disease-related common phenotypes for which we had statistical power to detect large numbers of common variant-common phenotype associations-11 132 cis-gene expression traits in 450 individuals and 93 circulating biomarkers in all 680 individuals. From a total of 11 657 229 high-quality variants of which 6 129 221 and 5 528 008 were common and low frequency (<5%), respectively, low frequency-large effect associations comprised 7% of detectable cis-gene expression traits [89 of 1314 cis-eQTLs at P < 1 × 10(-06) (false discovery rate ∼5%)] and one of eight biomarker associations at P < 8 × 10(-10). Very few (30 of 1232; 2%) common variant associations were fully explained by low-frequency variants. Our data show that whole-genome sequencing can identify low-frequency variants undetected by genotyping based approaches when sample sizes are sufficiently large to detect substantial numbers of common variant associations, and that common variant associations are rarely explained by single low-frequency variants of large effect

    Health-state utilities in a prisoner population : a cross-sectional survey

    Get PDF
    Background: Health-state utilities for prisoners have not been described. Methods: We used data from a 1996 cross-sectional survey of Australian prisoners (n = 734). Respondent-level SF-36 data was transformed into utility scores by both the SF-6D and Nichol's method. Socio-demographic and clinical predictors of SF-6D utility were assessed in univariate analyses and a multivariate general linear model. Results: The overall mean SF-6D utility was 0.725 (SD 0.119). When subdivided by various medical conditions, prisoner SF-6D utilities ranged from 0.620 for angina to 0.764 for those with none/mild depressive symptoms. Utilities derived by the Nichol's method were higher than SF-6D scores, often by more than 0.1. In multivariate analysis, significant independent predictors of worse utility included female gender, increasing age, increasing number of comorbidities and more severe depressive symptoms. Conclusion: The utilities presented may prove useful for future economic and decision models evaluating prison-based health programs

    Efficacy of a meal replacement diet plan compared to a food-based diet plan after a period of weight loss and weight maintenance: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity has reached epidemic proportions in the United States. It is implicated in the development of a variety of chronic disease states and is associated with increased levels of inflammation and oxidative stress. The objective of this study is to examine the effect of Medifast's meal replacement program (MD) on body weight, body composition, and biomarkers of inflammation and oxidative stress among obese individuals following a period of weight loss and weight maintenance compared to a an isocaloric, food-based diet (FB).</p> <p>Methods</p> <p>This 40-week randomized, controlled clinical trial included 90 obese adults with a body mass index (BMI) between 30 and 50 kg/m<sup>2</sup>, randomly assigned to one of two weight loss programs for 16 weeks and then followed for a 24-week period of weight maintenance. The dietary interventions consisted of Medifast's meal replacement program for weight loss and weight maintenance, or a self-selected, isocaloric, food-based meal plan.</p> <p>Results</p> <p>Weight loss at 16 weeks was significantly better in the Medifast group (MD) versus the food-based group (FB) (12.3% vs. 6.9%), and while significantly more weight was regained during weight maintenance on MD versus FB, overall greater weight loss was achieved on MD versus FB. Significantly more of the MD participants lost ≥ 5% of their initial weight at week 16 (93% vs. 55%) and week 40 (62% vs. 30%). There was no difference in satiety observed between the two groups during the weight loss phase. Significant improvements in body composition were also observed in MD participants compared to FB at week 16 and week 40. At week 40, both groups experienced improvements in biochemical outcomes and other clinical indicators.</p> <p>Conclusions</p> <p>Our data suggest that the meal replacement diet plan evaluated was an effective strategy for producing robust initial weight loss and for achieving improvements in a number of health-related parameters during weight maintenance, including inflammation and oxidative stress, two key factors more recently shown to underlie our most common chronic diseases.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT01011491</p

    Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: an essential enzyme for mycobacterial survival inside macrophages

    Get PDF
    Latent M. tuberculosis infection presents one of the major obstacles in the global eradication of tuberculosis (TB). Cholesterol plays a critical role in the persistence of M. tuberculosis within the macrophage during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into cell-wall lipids. Arylamine N-acetyltransferase (NAT) is encoded within a gene cluster that is involved in the cholesterol sterol-ring degradation and is essential for intracellular survival. The ability of the NAT from M. tuberculosis (TBNAT) to utilise propionyl-CoA links it to the cholesterol-catabolism pathway. Deleting the nat gene or inhibiting the NAT enzyme prevents intracellular survival and results in depletion of cell-wall lipids. TBNAT has been investigated as a potential target for TB therapies. From a previous high-throughput screen, 3-benzoyl-4-phenyl-1-methylpiperidinol was identified as a selective inhibitor of prokaryotic NAT that exhibited antimycobacterial activity. The compound resulted in time-dependent irreversible inhibition of the NAT activity when tested against NAT from M. marinum (MMNAT). To further evaluate the antimycobacterial activity and the NAT inhibition of this compound, four piperidinol analogues were tested. All five compounds exert potent antimycobacterial activity against M. tuberculosis with MIC values of 2.3-16.9 µM. Treatment of the MMNAT enzyme with this set of inhibitors resulted in an irreversible time-dependent inhibition of NAT activity. Here we investigate the mechanism of NAT inhibition by studying protein-ligand interactions using mass spectrometry in combination with enzyme analysis and structure determination. We propose a covalent mechanism of NAT inhibition that involves the formation of a reactive intermediate and selective cysteine residue modification. These piperidinols present a unique class of antimycobacterial compounds that have a novel mode of action different from known anti-tubercular drugs
    corecore