71 research outputs found

    An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers.

    Get PDF
    Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors

    Dynamic CpG methylation delineates subregions within super-enhancers selectively decommissioned at the exit from naïve pluripotency

    Get PDF
    Clusters of enhancers, referred as to super-enhancers (SEs), control the expression of cell identity genes. The organisation of these clusters, and how they are remodelled upon developmental transitions remain poorly understood. Here, we report the existence of two types of enhancer units within SEs typified by distinctive CpG methylation dynamics in embryonic stem cells (ESCs). We find that these units are either prone for decommissioning or remain constitutively active in epiblast stem cells (EpiSCs), as further established in the peri-implantation epiblast in vivo. Mechanistically, we show a pivotal role for ESRRB in regulating the activity of ESC-specific enhancer units and propose that the developmentally regulated silencing of ESRRB triggers the selective inactivation of these units within SEs. Our study provides insights into the molecular events that follow the loss of ESRRB binding, and offers a mechanism by which the naive pluripotency transcriptional programme can be partially reset upon embryo implantation

    DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation

    Get PDF
    Hematopoietic stem cells give rise to all blood cells in a differentiation process that involves widespread epigenome remodeling. Here we present genome-wide reference maps of the associated DNA methylation dynamics. We used a meta-epigenomic approach that combines DNA methylation profiles across many small pools of cells and performed single-cell methylome sequencing to assess cell-to-cell heterogeneity. The resulting dataset identified characteristic differences between HSCs derived from fetal liver, cord blood, bone marrow, and peripheral blood. We also observed lineage-specific DNA methylation between myeloid and lymphoid progenitors, characterized immature multi-lymphoid progenitors, and detected progressive DNA methylation differences in maturing megakaryocytes. We linked these patterns to gene expression, histone modifications, and chromatin accessibility, and we used machine learning to derive a model of human hematopoietic differentiation directly from DNA methylation data. Our results contribute to a better understanding of human hematopoietic stem cell differentiation and provide a framework for studying blood-linked diseases.This work was funded by the BLUEPRINT project (European Union’s Seventh Framework Programme grant 282510), the NIHR Cambridge Biomedical Research Centre, and the Austrian Academy of Sciences. F.A.C. is supported by a Medical Research Council Clinical Training Fellowship (grant MR/K024043/1). F.H. is supported by a postdoctoral fellowship of the German Research Council (DFG; grant HA 7723/1-1). J.K. is supported by a DOC Fellowship of the Austrian Academy of Sciences. W.H.O. is supported by the NIHR, BHF (grants PG-0310-1002 and RG/09/12/28096), and NHS Blood and Transplant. E.L. is supported by a Wellcome Trust Sir Henry Dale Fellowship (grant 107630/Z/15/Z) and core support grant from the Wellcome Trust and MRC to the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute. M. Frontini is supported by the BHF Cambridge Centre of Excellence (grant RE/13/6/30180). C.B. is supported by a New Frontiers Group award of the Austrian Academy of Sciences and by a European Research Council (ERC) Starting Grant (European Union’s Horizon 2020 research and innovation program; grant 679146)

    Tracking the embryonic stem cell transition from ground state pluripotency

    Get PDF
    Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP\textit{Rex1::GFP} reporter to isolate cells either side of exit from naive status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naive cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.This research was funded by the Wellcome Trust (091484/Z/10/Z and 095645/Z/11/Z), the Biotechnology and Biological Sciences Research Council (BB/M004023/1 and BB/K010867/1), a European Commission Framework 7 project EuroSyStem (HEALTH-F4-2007-200720 EUROSYSTEM), SysStemCell (ERC-2013-AdG 339431), the Medical Research Council (MRC) (G1100526/1) the Louis-Jeantet Foundation and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-VIDI 864.12.007). The Cambridge Stem Cell Institute receives core funding from the Wellcome Trust and Medical Research Council (MRC). A.S. is an MRC Professor. Deposited in PMC for immediate release

    Tracking the embryonic stem cell transition from ground state pluripotency

    Get PDF
    Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP\textit{Rex1::GFP} reporter to isolate cells either side of exit from naive status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naive cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.This research was funded by the Wellcome Trust (091484/Z/10/Z and 095645/Z/11/Z), the Biotechnology and Biological Sciences Research Council (BB/M004023/1 and BB/K010867/1), a European Commission Framework 7 project EuroSyStem (HEALTH-F4-2007-200720 EUROSYSTEM), SysStemCell (ERC-2013-AdG 339431), the Medical Research Council (MRC) (G1100526/1) the Louis-Jeantet Foundation and the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-VIDI 864.12.007). The Cambridge Stem Cell Institute receives core funding from the Wellcome Trust and Medical Research Council (MRC). A.S. is an MRC Professor. Deposited in PMC for immediate release

    The non-coding variant rs1800734 enhances DCLK3 expression through long-range interaction and promotes colorectal cancer progression.

    Get PDF
    Genome-wide association studies have identified a great number of non-coding risk variants for colorectal cancer (CRC). To date, the majority of these variants have not been functionally studied. Identification of allele-specific transcription factor (TF) binding is of great importance to understand regulatory consequences of such variants. A recently developed proteome-wide analysis of disease-associated SNPs (PWAS) enables identification of TF-DNA interactions in an unbiased manner. Here we perform a large-scale PWAS study to comprehensively characterize TF-binding landscape that is associated with CRC, which identifies 731 allele-specific TF binding at 116 CRC risk loci. This screen identifies the A-allele of rs1800734 within the promoter region of MLH1 as perturbing the binding of TFAP4 and consequently increasing DCLK3 expression through a long-range interaction, which promotes cancer malignancy through enhancing expression of the genes related to epithelial-to-mesenchymal transition

    Jmjd2c facilitates the assembly of essential enhancer-protein complexes at the onset of embryonic stem cell differentiation.

    Get PDF
    Jmjd2 H3K9 demethylases cooperate in promoting mouse embryonic stem cell (ESC) identity. However, little is known about their importance at the exit of ESC pluripotency. Here, we reveal that Jmjd2c facilitates this process by stabilising the assembly of mediator-cohesin complexes at lineage-specific enhancers. Functionally, we show that Jmjd2c is required in ESCs to initiate appropriate gene expression programs upon somatic multi-lineage differentiation. In the absence of Jmjd2c, differentiation is stalled at an early post-implantation epiblast-like stage, while Jmjd2c-knockout ESCs remain capable of forming extra-embryonic endoderm derivatives. Dissection of the underlying molecular basis revealed that Jmjd2c is re-distributed to lineage-specific enhancers during ESC priming for differentiation. Interestingly, Jmjd2c-bound enhancers are co-occupied by the H3K9-methyltransferase G9a (also known as Ehmt2), independently of its H3K9-modifying activity. Loss of Jmjd2c abrogates G9a recruitment and further destabilises loading of the mediator and cohesin components Med1 and Smc1a at newly activated and poised enhancers in ESC-derived epiblast-like cells. These findings unveil Jmjd2c and G9a as novel enhancer-associated factors, and implicate Jmjd2c as a molecular scaffold for the assembly of essential enhancer-protein complexes with an impact on timely gene activation.This work was supported by the Fundação para a Ciência e a Tecnologia (Portugal) (SFRH/BD/70242/2010), by the Genesis Research Trust (P55000), by the British Heart Foundation (PG/12/86/29930), by an Imperial College London President's PhD Scholarship (STU0082882), by the Centre National de la Recherche Scientifique, by the Medical Research Council (MR/K00090X/1 and MR/K500793/1), by the Wellcome Trust Sanger Institute, by the Francis Crick Institute [which receives its core funding from Cancer Research UK (FC001120), the UK Medical Research Council (FC001120) and the Wellcome Trust (FC001120)], by a European Research Council grant (ERC-2013-ADG, 339431 ‘SysStemCell’) and by Imperial College London. Deposited in PMC for immediate release

    eFORGE: A Tool for Identifying Cell Type-Specific Signal in Epigenomic Data

    Get PDF
    Epigenome-wide association studies (EWAS) provide an alternative approach for studying human disease through consideration of non-genetic variants such as altered DNA methylation. To advance the complex interpretation of EWAS, we developed eFORGE (http://eforge.cs.ucl.ac.uk/), a new standalone and web-based tool for the analysis and interpretation of EWAS data. eFORGE determines the cell type-specific regulatory component of a set of EWAS-identified differentially methylated positions. This is achieved by detecting enrichment of overlap with DNase I hypersensitive sites across 454 samples (tissues, primary cell types, and cell lines) from the ENCODE, Roadmap Epigenomics, and BLUEPRINT projects. Application of eFORGE to 20 publicly available EWAS datasets identified disease-relevant cell types for several common diseases, a stem cell-like signature in cancer, and demonstrated the ability to detect cell-composition effects for EWAS performed on heterogeneous tissues. Our approach bridges the gap between large-scale epigenomics data and EWAS-derived target selection to yield insight into disease etiology.C.E.B. was supported by a PhD fellowship from the EU-FP7 project EpiTrain (316758). J.H. was supported by the UCL Cancer Institute Research Trust. V.K.R. was supported by BLUEPRINT (282510). K.D. was funded as a HSST trainee by NHS Health Education England. M.F. was supported by the BHF Cambridge Centre of Excellence (RE/13/6/30180). Research in W.H.O.’s laboratory was supported by EU-FP7 project BLUEPRINT (282510) and by program grants from the National Institute for Health Research (NIHR, http://www.nihr.ac.uk) and the British Heart Foundation under numbers RP-PG-0310-1002 and RG/09/12/28096 (https://www.bhf.org.uk/). W.H.O.’s laboratory receives funding from NHS Blood and Transplant for facilities. We gratefully acknowledge the participation of all NIHR Cambridge BioResource volunteers. We thank the Cambridge BioResource staff for their help with volunteer recruitment. We thank members of the Cambridge BioResource SAB and Management Committee for their support of our study and the National Institute for Health Research Cambridge Biomedical Research Centre for funding. R.S. and his group were supported by the European Union in the framework of the BLUEPRINT Project (HEALTH-F5-2011-282510) and the German Ministry of Science and Education (BMBF) in the framework of the MMML-MYC-SYS project (036166B). We thank Deborah Winter (Weizmann Institute) for supplying a set of microglial enhancers from Lavin et al. (2014). Research in S.B.’s laboratory was supported by the Wellcome Trust (99148), Royal Society Wolfson Research Merit Award (WM100023), and EU-FP7 projects EpiTrain (316758), EPIGENESYS (257082), and BLUEPRINT (282510)

    Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells

    Get PDF
    Characterizing the multifaceted contribution of genetic and epigenetic factors to disease phenotypes is a major challenge in human genetics and medicine. We carried out high-resolution genetic, epigenetic, and transcriptomic profiling in three major human immune cell types (CD14+^{+} monocytes, CD16+^{+} neutrophils, and naive CD4+^{+} T cells) from up to 197 individuals. We assess, quantitatively, the relative contribution of cis\textit{cis}-genetic and epigenetic factors to transcription and evaluate their impact as potential sources of confounding in epigenome-wide association studies. Further, we characterize highly coordinated genetic effects on gene expression, methylation, and histone variation through quantitative trait locus (QTL) mapping and allele-specific (AS) analyses. Finally, we demonstrate colocalization of molecular trait QTLs at 345 unique immune disease loci. This expansive, high-resolution atlas of multi-omics changes yields insights into cell-type-specific correlation between diverse genomic inputs, more generalizable correlations between these inputs, and defines molecular events that may underpin complex disease risk.This work was predominantly funded by the EU FP7 High Impact Project BLUEPRINT (HEALTH-F5-2011-282510) and the Canadian Institutes of Health Research (CIHR EP1-120608). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no 282510 (BLUEPRINT), the European Molecular Biology Laboratory, the Max Planck society, the Spanish Ministry of Economy and Competitiveness, ‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-0208 and Spanish National Bioinformatics Institute (INB-ISCIII) PT13/0001/0021 co-funded by FEDER "“Una Manera de hacer Europa”. D.G. is supported by a “la Caixa”-Severo Ochoa pre-doctoral fellowship, M.F. was supported by the BHF Cambridge Centre of Excellence [RE/13/6/30180], K.D. is funded as a HSST trainee by NHS Health Education England, S.E. is supported by a fellowship from La Caixa, V.P. is supported by a FEBS long-term fellowship and N.S.'s research is supported by the Wellcome Trust (Grant Codes WT098051 and WT091310), the EU FP7 (EPIGENESYS Grant Code 257082 and BLUEPRINT Grant Code HEALTH-F5-2011-282510) and the NIHR BRC. The Blood and Transplant Unit (BTRU) in Donor Health and Genomics is part of and funded by the National Institute for Health Research (NIHR) and is a partnership between the University of Cambridge and NHS Blood and Transplant (NHSBT) in collaboration with the University of Oxford and the Wellcome Trust Sanger Institute. The T-cell data was produced by the McGill Epigenomics Mapping Centre (EMC McGill). It is funded under the Canadian Epigenetics, Environment, and Health Research Consortium (CEEHRC) by the Canadian Institutes of Health Research and by Genome Quebec (CIHR EP1-120608), with additional support from Genome Canada and FRSQ. T.P. holds a Canada Research Chair
    corecore