331 research outputs found

    Financial crises and the attainment of the SDGs: an adjusted multidimensional poverty approach

    Get PDF
    This paper analyses the impact of financial crises on the Sustainable Development Goal of eradicating poverty. To do so, we develop an adjusted Multidimensional Poverty Framework (MPF) that includes 15 indicators that span across key poverty aspects related to income, basic needs, health, education and the environment. We then use an econometric model that allows us to examine the impact of financial crises on these indicators in 150 countries over the period 1980–2015. Our analysis produces new estimates on the impact of financial crises on poverty’s multiple social, economic and environmental aspects and equally important captures dynamic linkages between these aspects. Thus, we offer a better understanding of the potential impact of current debt dynamics on Multidimensional Poverty and demonstrate the need to move beyond the boundaries of SDG1, if we are to meet the target of eradicating poverty. Our results indicate that the current financial distress experienced by many low-income countries may reverse the progress that has been made hitherto in reducing poverty. We find that financial crises are associated with an approximately 10% increase of extreme poor in low-income countries. The impact is even stronger in some other poverty aspects. For instance, crises are associated with an average decrease of government spending in education by 17.72% in low-income countries. The dynamic linkages between most of the Multidimensional Poverty indicators, warn of a negative domino effect on a number of SDGs related to poverty, if there is a financial crisis shock. To pre-empt such a domino effect, the specific SDG target 17.4 on attaining long-term debt sustainability through coordinated policies plays a key role and requires urgent attention by the international community

    Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases

    Get PDF
    For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient’s data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together >300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of >19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe

    Regulation of cellular proliferation, differentiation and cell death by activated Raf

    Get PDF
    The protein kinases Raf-1, A-Raf and B-Raf connect receptor stimulation with intracellular signaling pathways and function as a central intermediate in many signaling pathways. Gain-of-function experiments shed light on the pleiotropic biological activities of these enzymes. Expression experiments involving constitutively active Raf revealed the essential functions of Raf in controlling proliferation, differentiation and cell death in a cell-type specific manner

    The Environment of the Binary Neutron Star Merger GW170817

    Get PDF
    We present Hubble Space Telescope (HST) and Chandra imaging, combined with Very Large Telescope MUSE integral field spectroscopy of the counterpart and host galaxy of the first binary neutron star merger detected via gravitational-wave emission by LIGO and Virgo, GW170817. The host galaxy, NGC 4993, is an S0 galaxy at z = 0.009783. There is evidence for large, face-on spiral shells in continuum imaging, and edge-on spiral features visible in nebular emission lines. This suggests that NGC 4993 has undergone a relatively recent (1\lesssim 1 Gyr) "dry" merger. This merger may provide the fuel for a weak active nucleus seen in Chandra imaging. At the location of the counterpart, HST imaging implies there is no globular or young stellar cluster, with a limit of a few thousand solar masses for any young system. The population in the vicinity is predominantly old with lesssim1% of any light arising from a population with ages <500Myr\lt 500\,\mathrm{Myr}. Both the host galaxy properties and those of the transient location are consistent with the distributions seen for short-duration gamma-ray bursts, although the source position lies well within the effective radius (re3{r}_{e}\sim 3 kpc), providing an r e -normalized offset that is closer than 90%\sim 90 \% of short GRBs. For the long delay time implied by the stellar population, this suggests that the kick velocity was significantly less than the galaxy escape velocity. We do not see any narrow host galaxy interstellar medium features within the counterpart spectrum, implying low extinction, and that the binary may lie in front of the bulk of the host galaxy

    Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling

    Get PDF
    Plant volatiles emitted by Medicago truncatula in response to feeding larvae of Spodoptera exigua are composed of a complex blend of terpenoids. The cDNAs of three terpene synthases (TPSs), which contribute to the blend of terpenoids, were cloned from M. truncatula. Their functional characterization proved MtTPS1 to be a β-caryophyllene synthase and MtTPS5 to be a multi-product sesquiterpene synthase. MtTPS3 encodes a bifunctional enzyme producing (E)-nerolidol and geranyllinalool (precursors of C11 and C16 homoterpenes) from different prenyl diphosphates serving as substrates. The addition of jasmonic acid (JA) induced expression of the TPS genes, but terpenoid emission was higher from plants treated with JA and the ethylene precursor 1-amino-cyclopropyl-1-carboxylic acid. Compared to infested wild-type M. truncatula plants, lower amounts of various sesquiterpenes and a C11–homoterpene were released from an ethylene-insensitive mutant skl. This difference coincided with lower transcript levels of MtTPS5 and of 1-deoxy-d-xylulose-5-phosphate synthase (MtDXS2) in the damaged skl leaves. Moreover, ethephon, an ethylene-releasing compound, modified the extent and mode of the herbivore-stimulated Ca2+ variations in the cytoplasm that is necessary for both JA and terpene biosynthesis. Thus, ethylene contributes to the herbivory-induced terpenoid biosynthesis at least twice: by modulating both early signaling events such as cytoplasmic Ca2+-influx and the downstream JA-dependent biosynthesis of terpenoids

    A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): A review of clinical studies on weight loss and glycemic control

    Get PDF
    Obesity, and resultant health hazards which include diabetes, cardiovascular disease and metabolic syndrome, are worldwide medical problems. Control of diet and exercise are cornerstones of the management of excess weight. Foods with a low glycemic index may reduce the risk of diabetes and heart disease as well as their complications. As an alternative to a low glycemic index diet, there is a growing body of research into products that slow the absorption of carbohydrates through the inhibition of enzymes responsible for their digestion. These products include alpha-amylase and glucosidase inhibitors. The common white bean (Phaseolus vulgaris) produces an alpha-amylase inhibitor, which has been characterized and tested in numerous clinical studies. A specific and proprietary product named Phase 2® Carb Controller (Pharmachem Laboratories, Kearny, NJ) has demonstrated the ability to cause weight loss with doses of 500 to 3000 mg per day, in either a single dose or in divided doses. Clinical studies also show that Phase 2 has the ability to reduce the post-prandial spike in blood glucose levels. Experiments conducted incorporating Phase 2 into food and beverage products have found that it can be integrated into various products without losing activity or altering the appearance, texture or taste of the food. There have been no serious side effects reported following consumption of Phase 2. Gastro-intestinal side effects are rare and diminish upon extended use of the product. In summary, Phase 2 has the potential to induce weight loss and reduce spikes in blood sugar caused by carbohydrates through its alpha-amylase inhibiting activity

    Effect of commercial breakfast fibre cereals compared with corn flakes on postprandial blood glucose, gastric emptying and satiety in healthy subjects: a randomized blinded crossover trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dietary fibre food intake is related to a reduced risk of developing diabetes mellitus. However, the mechanism of this effect is still not clear. The aim of this study was to evaluate the effect of commercial fibre cereals on the rate of gastric emptying, postprandial glucose response and satiety in healthy subjects.</p> <p>Methods</p> <p>Gastric emptying rate (GER) was measured by standardized real time ultrasonography. Twelve healthy subjects were assessed using a randomized crossover blinded trial. The subjects were examined after an 8 hour fast and after assessment of normal fasting blood glucose level. Satiety scores were estimated and blood glucose measurements were taken before and at 0, 20, 30, 40, 60, 80, 100 and 120 min after the end of the meal. GER was calculated as the percentage change in the antral cross-sectional area 15 and 90 min after ingestion of sour milk with corn flakes (GER1), cereal bran flakes (GER2) or wholemeal oat flakes (GER3).</p> <p>Results</p> <p>The median value was, respectively, 42% for GER1, 33 % for GER2 and 51% for GER3. The difference between the GER after ingestion of bran flakes compared to wholemeal oat flakes was statistically significant (p = 0.023). The postprandial delta blood glucose level was statistically significantly lower at 40 min (p = 0.045) and 120 min (p = 0.023) after the cereal bran flakes meal. There was no statistical significance between the areas under the curve (AUCs) of the cereals as far as blood glucose and satiety were concerned.</p> <p>Conclusion</p> <p>The result of this study demonstrates that the intake of either bran flakes or wholemeal oat flakes has no effect on the total postprandial blood glucose response or satiety when compared to corn flakes. However, the study does show that the intake of cereal bran flakes slows the GER when compared to oat flakes and corn flakes, probably due to a higher fibre content. Since these products do not differ in terms of glucose response and satiety on healthy subjects, they should be considered equivalent in this respect.</p> <p>Trial registration</p> <p>ISRCTN90535566</p

    Consumption of alcohol, cigarettes and illegal substances among physicians and medical students in Brandenburg and Saxony (Germany)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients regard health care professionals as role models for leading a healthy lifestyle. Health care professionals' own behaviour and attitudes concerning healthy lifestyle have an influence in counselling patients. The aim of this study was to assess consumption of alcohol, cigarettes and illegal substances among physicians and medical students in two German states: Brandenburg and Saxony.</p> <p>Methods</p> <p>Socio-demographic data and individual risk behaviour was collected by an anonymous self-administered questionnaire. Physicians were approached via mail and students were recruited during tutorials or lectures.</p> <p>Results</p> <p>41.6% of physicians and 60.9% of medical students responded to the questionnaire; more than 50% of the respondents in both groups were females. The majority of respondents consumed alcohol at least once per week; median daily alcohol consumption ranged from 3.88 g/d (female medical students) to 12.6 g/d (male physicians). A significantly higher percentage of men (p < 0.05) reported hazardous or harmful drinking compared to women. A quarter of all participating physicians and one third of all students indicated unhealthy alcohol-drinking behaviour. The majority of physicians (85.7%) and medical students (78.5%) were non-smokers. Both groups contained significantly more female non-smokers (p < 0.05). Use of illegal substances was considerably lower in physicians (5.1%) than medical students (33.0%). Male students indicated a significantly (p < 0.001) higher level of illegal drug-use compared to female students.</p> <p>Conclusion</p> <p>More than one third of the medical students and health care professionals showed problematic alcohol-drinking behaviour. Although the proportion of non-smokers in the investigated sample was higher than in the general population, when compared to the general population, medical students between 18-24 reported higher consumption of illegal substances.</p> <p>These results indicate that methods for educating and promoting healthy lifestyle, particularly with respect to excessive alcohol consumption, tobacco use and abuse of illegal drugs should be considered.</p

    Musashi expression in β-cells coordinates insulin expression, apoptosis and proliferation in response to endoplasmic reticulum stress in diabetes

    Get PDF
    Diabetes is associated with the death and dysfunction of insulin-producing pancreatic β-cells. In other systems, Musashi genes regulate cell fate via Notch signaling, which we recently showed regulates β-cell survival. Here we show for the first time that human and mouse adult islet cells express mRNA and protein of both Musashi isoforms, as well Numb/Notch/Hes/neurogenin-3 pathway components. Musashi expression was observed in insulin/glucagon double-positive cells during human fetal development and increased during directed differentiation of human embryonic stem cells (hESCs) to the pancreatic lineage. De-differentiation of β-cells with activin A increased Msi1 expression. Endoplasmic reticulum (ER) stress increased Msi2 and Hes1, while it decreased Ins1 and Ins2 expression, revealing a molecular link between ER stress and β-cell dedifferentiation in type 2 diabetes. These effects were independent of changes in Numb protein levels and Notch activation. Overexpression of MSI1 was sufficient to increase Hes1, stimulate proliferation, inhibit apoptosis and reduce insulin expression, whereas Msi1 knockdown had the converse effects on proliferation and insulin expression. Overexpression of MSI2 resulted in a decrease in MSI1 expression. Taken together, these results demonstrate overlapping, but distinct roles for Musashi-1 and Musashi-2 in the control of insulin expression and β-cell proliferation. Our data also suggest that Musashi is a novel link between ER stress and the compensatory β-cell proliferation and the loss of β-cell gene expression seen in specific phases of the progression to type 2 diabetes
    corecore