82 research outputs found

    The use of thermographic imaging to evaluate therapeutic response in human tumour xenograft models

    Get PDF
    YesNon-invasive methods to monitor tumour growth are an important goal in cancer drug development. Thermographic imaging systems offer potential in this area, since a change in temperature is known to be induced due to changes within the tumour microenvironment. This study demonstrates that this imaging modality can be applied to a broad range of tumour xenografts and also, for the first time, the methodology’s suitability to assess anti-cancer agent efficacy. Mice bearing subcutaneously implanted H460 lung cancer xenografts were treated with a novel vascular disrupting agent, ICT-2552, and the cytotoxin doxorubicin. The effects on tumour temperature were assessed using thermographic imaging over the first 6 hours post-administration and subsequently a further 7 days. For ICT-2552 a significant initial temperature drop was observed, whilst for both agents a significant temperature drop was seen compared to controls over the longer time period. Thus thermographic imaging can detect functional differences (manifesting as temperature reductions) in the tumour response to these anti-cancer agents compared to controls. Importantly, these effects can be detected in the first few hours following treatment and therefore the tumour is observable non-invasively. As discussed, this technique will have considerable 3Rs benefits in terms of reduction and refinement of animal use.University of Bradfor

    Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy.</p> <p>Methods</p> <p>Doxorubicin was loaded onto a lipid-modified dextran based polymeric nano-system. The effect of various concentrations of doxorubicin alone or nanoparticle loaded doxorubicin on KHOS, KHOS<sub>R2</sub>, U-2OS, and U-2OS<sub>R2 </sub>cells was analyzed. Effects on drug retention, immunofluorescence, Pgp expression, and induction of apoptosis were also analyzed.</p> <p>Results</p> <p>Dextran nanoparticles loaded with doxorubicin had a curative effect on multidrug resistant osteosarcoma cell lines by increasing the amount of drug accumulation in the nucleus via Pgp independent pathway. Nanoparticles loaded with doxorubicin also showed increased apoptosis in osteosarcoma cells as compared with doxorubicin alone.</p> <p>Conclusion</p> <p>Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines. These findings may lead to new treatment options for MDR osteosarcoma.</p

    Dual mechanism of daunorubicin-induced cell death in both sensitive and MDR-resistant HL-60 cells

    Get PDF
    Exposure of some acute myeloid leukaemia (AML) cells to daunorubicin leads to rapid cell death, whereas other AML cells show natural drug resistance. This has been attributed to expression of functional P-glycoprotein resulting in reduced drug accumulation. However, it has also been proposed that P-glycoprotein-expressing multidrug-resistant (MDR) cells are inherently defective for apoptosis. To distinguish between these different possibilities, we have compared the cell death process in a human AML cell line (HL-60) with a MDR subline (HL-60/Vinc) at doses that yield either similar intracellular daunorubicin concentrations or comparable cytotoxicity. Adjustment of the dose to obtain the same intracellular drug accumulation in the two cell lines did not result in equal cytotoxicity, suggesting the presence of additional resistance mechanisms in the P-glycoprotein-expressing HL-60/Vinc cells. However, at equitoxic doses, similar cell death pathways were observed. In HL-60 cells, daunorubicin induced rapid apoptosis at 0.5–1 ÎŒM and delayed mitotic cell death at 0.1 ÎŒM. These concentrations are within the clinical dose range. Similarly, HL-60/Vinc cells underwent apoptosis at 50–100 ÎŒM daunorubicin and mitotic cell death at 10 ÎŒM. These results show, for the first time, that anthracyclines can induce cell death by a dual mechanism in both sensitive and MDR cells. Our results also show that not only the cytotoxicity, but also the kinetics and mechanism of cell death, are dose dependent. Interestingly, regrowth was observed only in association with delayed cell death and the formation of enlarged, often polyploid, cells with micronucleation, suggesting that morphological criteria may be useful to evaluate treatment efficacy in patients with myeloid leukaemias. © 1999 Cancer Research Campaig

    Caspase-dependent and -independent suppression of apoptosis by monoHER in Doxorubicin treated cells

    Get PDF
    Doxorubicin (DOX) is an antitumour agent for different types of cancer, but the dose-related cardiotoxicity limits its clinical use. To prevent this side effect we have developed the flavonoid monohydroxyethylrutoside (monoHER), a promising protective agent, which did not interfere with the antitumour activity of DOX. To obtain more insight in the mechanism underlying the selective protective effects of monoHER, we investigated whether monoHER (1 mM) affects DOX-induced apoptosis in neonatal rat cardiac myocytes (NeRCaMs), human endothelial cells (HUVECs) and the ovarian cancer cell lines A2780 and OVCAR-3. DOX-induced cell death was effectively reduced by monoHER in heart, endothelial and A2780 cells. OVCAR-3 cells were highly resistant to DOX-induced apoptosis. Experiments with the caspase-inhibitor zVAD-fmk showed that DOX-induced apoptosis was caspase-dependent in HUVECs and A2780 cells, whereas caspase-independent mechanisms seem to be important in NeRCaMs. MonoHER suppressed DOX-dependent activation of the mitochondrial apoptotic pathway in normal and A2780 cells as illustrated by p53 accumulation and activation of caspase-9 and -3 cleavage. Thus, monoHER acts by suppressing the activation of molecular mechanisms that mediate either caspase-dependent or -independent cell death. In light of the current work and our previous studies, the use of clinically achievable concentrations of monoHER has no influence on the antitumour activity of DOX whereas higher concentrations as used in the present study could influence the antitumour activity of DOX

    Modeling CICR in rat ventricular myocytes: voltage clamp studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect <it>Ca</it><sup>2+ </sup>loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR <it>Ca</it><sup>2+ </sup>release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic <it>Ca</it><sup>2+ </sup>concentration ([<it>Ca</it><sup>2+</sup>]<it><sub>myo</sub></it>).</p> <p>Methods</p> <p>The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed <it>Ca</it><sup>2+ </sup>channels (trigger-channel and release-channel). It releases <it>Ca</it><sup>2+ </sup>flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[<it>Ca</it><sup>2+</sup>]<it><sub>myo</sub></it>.</p> <p>Results</p> <p>Our model reproduces measured VC data published by several laboratories, and generates graded <it>Ca</it><sup>2+ </sup>release at high <it>Ca</it><sup>2+ </sup>gain in a homeostatically-controlled environment where [<it>Ca</it><sup>2+</sup>]<it><sub>myo </sub></it>is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR <it>Ca</it><sup>2+ </sup>release, its activation by trigger <it>Ca</it><sup>2+</sup>, and its refractory characteristics mediated by the luminal SR <it>Ca</it><sup>2+ </sup>sensor. Proper functioning of the DCU, sodium-calcium exchangers and SERCA pump are important in achieving negative feedback control and hence <it>Ca</it><sup>2+ </sup>homeostasis.</p> <p>Conclusions</p> <p>We examine the role of the above <it>Ca</it><sup>2+ </sup>regulating mechanisms in handling various types of induced disturbances in <it>Ca</it><sup>2+ </sup>levels by quantifying cellular <it>Ca</it><sup>2+ </sup>balance. Our model provides biophysically-based explanations of phenomena associated with CICR generating useful and testable hypotheses.</p

    Test of lepton universality in b→sℓ+ℓ−b \rightarrow s \ell^+ \ell^- decays

    Get PDF
    The first simultaneous test of muon-electron universality using B+→K+ℓ+ℓ−B^{+}\rightarrow K^{+}\ell^{+}\ell^{-} and B0→K∗0ℓ+ℓ−B^{0}\rightarrow K^{*0}\ell^{+}\ell^{-} decays is performed, in two ranges of the dilepton invariant-mass squared, q2q^{2}. The analysis uses beauty mesons produced in proton-proton collisions collected with the LHCb detector between 2011 and 2018, corresponding to an integrated luminosity of 9 fb−1\mathrm{fb}^{-1}. Each of the four lepton universality measurements reported is either the first in the given q2q^{2} interval or supersedes previous LHCb measurements. The results are compatible with the predictions of the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-046.html (LHCb public pages
    • 

    corecore