20 research outputs found

    The heteronomy of choice architecture

    Get PDF
    Choice architecture is heralded as a policy approach that does not coercively reduce freedom of choice. Still we might worry that this approach fails to respect individual choice because it subversively manipulates individuals, thus contravening their personal autonomy. In this article I address two arguments to this effect. First, I deny that choice architecture is necessarily heteronomous. I explain the reasons we have for avoiding heteronomous policy-making and offer a set of four conditions for non-heteronomy. I then provide examples of nudges that meet these conditions. I argue that these policies are capable of respecting and promoting personal autonomy, and show this claim to be true across contrasting conceptions of autonomy. Second, I deny that choice architecture is disrespectful because it is epistemically paternalistic. This critique appears to loom large even against non-heteronomous nudges. However, I argue that while some of these policies may exhibit epistemically paternalistic tendencies, these tendencies do not necessarily undermine personal autonomy. Thus, if we are to find such policies objectionable, we cannot do so on the grounds of respect for autonomy

    Vertical distribution of fish larvae in the Canaries-African coastal transition zone, in summer

    Get PDF
    13 pages, 6 figures, 2 tables.-- Printed version published Jul 2006.This study reports the vertical distribution of fish larvae during the 1999 summer upwelling season in the Canaries-African Coastal Transition Zone (the Canaries-ACTZ). The transition between the African coastal upwelling and the typical subtropical offshore conditions is a region of intense mesoscale activity that supports a larval fish population dominated by African neritic species. During the study, the thermal stratification extended almost to the surface everywhere, and the surface mixed layer was typically shallow or non-existent. Upwelling occurred on the African shelf in a limited coastal sub-area of our sampling. The vertical distributions of the entire larval fish population, as well as of individual species, were independent of the seasonal thermocline. Fish larvae and mesozooplankton were concentrated at intermediate depths regardless of the thermocline position, probably because of its weak signature and spatial and temporal variability. Day/night vertical distributions suggest that some species did not perform diel vertical migration (DVM), whereas others showed either type I DVM or type II DVM. The opposing DVM patterns of different species compensate for each other resulting in no net DVM for the larval fish population as a whole.Fieldwork was carried out as part of the CANIGO project, funded by the EU, and of the "Pelagic (EU-CICYT 1FD97-1084)" project from the Spanish Ministry of Education and the European Union

    Monitoring Spawning Activity in a Southern California Marine Protected Area Using Molecular Identification of Fish Eggs

    No full text
    In order to protect the diverse ecosystems of coastal California, a series of marine protected areas (MPAs) have been established. The ability of these MPAs to preserve and potentially enhance marine resources can only be assessed if these habitats are monitored through time. This study establishes a baseline for monitoring the spawning activity of fish in the MPAs adjacent to Scripps Institution of Oceanography (La Jolla, CA, USA) by sampling fish eggs from the plankton. Using vertical plankton net tows, 266 collections were made from the Scripps Pier between 23 August 2012 and 28 August 2014; a total of 21,269 eggs were obtained. Eggs were identified using DNA barcoding: the COI or 16S rRNA gene was amplified from individual eggs and sequenced. All eggs that were successfully sequenced could be identified from a database of molecular barcodes of California fish species, resulting in species-level identification of 13,249 eggs. Additionally, a surface transport model of coastal circulation driven by current maps from high frequency radar was used to construct probability maps that estimate spawning locations that gave rise to the collected eggs. These maps indicated that currents usually come from the north but water parcels tend to be retained within the MPA; eggs sampled at the Scripps Pier have a high probability of having been spawned within the MPA. The surface transport model also suggests that although larvae have a high probability of being retained within the MPA, there is also significant spillover into nearby areas outside the MPA. This study provides an important baseline for addressing the extent to which spawning patterns of coastal California species may be affected by future changes in the ocean environment
    corecore