2,952 research outputs found

    A model for selection of eyespots on butterfly wings

    Get PDF
    The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins). A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not. We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed) boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions observed in nature. We therefore conclude that changes in the proximal boundary conditions are sufficient to explain the empirically observed distribution of eyespot focus points on the entire wing surface. The model predicts, subject to experimental verification, that the source strength of the activator at the proximal boundary should be lower in wing cells in which focus points form than in those that lack focus points. The model suggests that the number and locations of eyespot foci on the wing disc could be largely controlled by two kinds of gradients along two different directions, that is, the first one is the gradient in spatially varying parameters such as the reaction rate along the anterior-posterior direction on the proximal boundary of the wing cells, and the second one is the gradient in source values of the activator along the veins in the proximal-distal direction of the wing cell

    Morphological and moisture availability controls of the leaf area-to-sapwood area ratio: Analysis of measurements on Australian trees

    Get PDF
    © 2015 Published by John Wiley & Sons Ltd. The leaf area-to-sapwood area ratio (LA:SA) is a key plant trait that links photosynthesis to transpiration. The pipe model theory states that the sapwood cross-sectional area of a stem or branch at any point should scale isometrically with the area of leaves distal to that point. Optimization theory further suggests that LA:SA should decrease toward drier climates. Although acclimation of LA:SA to climate has been reported within species, much less is known about the scaling of this trait with climate among species. We compiled LA:SA measurements from 184 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed, based on measurements on branches and trunks of trees from one to 27 years old. Despite considerable scatter in LA:SA among species, quantile regression showed strong (0.2 < R1 < 0.65) positive relationships between two climatic moisture indices and the lowermost (5%) and uppermost (5-15%) quantiles of log LA:SA, suggesting that moisture availability constrains the envelope of minimum and maximum values of LA:SA typical for any given climate. Interspecific differences in plant hydraulic conductivity are probably responsible for the large scatter of values in the mid-quantile range and may be an important determinant of tree morphology. We compiled LA:SA measurements from 183 species of Australian evergreen angiosperm trees. The pipe model was broadly confirmed. LA:SA quantile regression showed positive relationships between two climatic moisture indices and the lowermost and uppermost quantiles

    Imaging Atherosclerosis.

    Get PDF
    Advances in atherosclerosis imaging technology and research have provided a range of diagnostic tools to characterize high-risk plaque in vivo; however, these important vascular imaging methods additionally promise great scientific and translational applications beyond this quest. When combined with conventional anatomic- and hemodynamic-based assessments of disease severity, cross-sectional multimodal imaging incorporating molecular probes and other novel noninvasive techniques can add detailed interrogation of plaque composition, activity, and overall disease burden. In the catheterization laboratory, intravascular imaging provides unparalleled access to the world beneath the plaque surface, allowing tissue characterization and measurement of cap thickness with micrometer spatial resolution. Atherosclerosis imaging captures key data that reveal snapshots into underlying biology, which can test our understanding of fundamental research questions and shape our approach toward patient management. Imaging can also be used to quantify response to therapeutic interventions and ultimately help predict cardiovascular risk. Although there are undeniable barriers to clinical translation, many of these hold-ups might soon be surpassed by rapidly evolving innovations to improve image acquisition, coregistration, motion correction, and reduce radiation exposure. This article provides a comprehensive review of current and experimental atherosclerosis imaging methods and their uses in research and potential for translation to the clinic.J.M.T. is supported by a Wellcome Trust research training fellowship (104492/Z/14/Z). M.D is supported by the British Heart Foundation (FS/14/78/31020). N.R.E. is supported by a research training fellowship from the Dunhill Medical Trust (RTF44/0114). A.J.B. is supported by the British Heart Foundation. J.H.F.R. is part-supported by the HEFCE, the NIHR Cambridge Biomedical Research Centre, the British Heart Foundation, and the Wellcome Trust.This is the final version of the article. It first appeared from the American Heart Association via http://dx.doi.org/10.1161/CIRCRESAHA.115.30624

    Hemorrhagic Shock Caused by Rupture of an Intra-Abdominal Leydig Cell Tumour: Case Report

    Get PDF
    The rupture of an intra-abdominal testicular neoplasm is a rare cause of acute abdomen and massive intra-abdominal haemorrhage. We report the case of a 70-year-old male presenting a massive intra-abdominal bleeding caused by a Leydig cell tumour in an undescended testis. The clinical details and pathology of this rare testicular tumour are discussed

    PET Imaging of Atherosclerotic Disease: Advancing Plaque Assessment from Anatomy to Pathophysiology.

    Get PDF
    Atherosclerosis is a leading cause of morbidity and mortality. It is now widely recognized that the disease is more than simply a flow-limiting process and that the atheromatous plaque represents a nidus for inflammation with a consequent risk of plaque rupture and atherothrombosis, leading to myocardial infarction or stroke. However, widely used conventional clinical imaging techniques remain anatomically focused, assessing only the degree of arterial stenosis caused by plaques. Positron emission tomography (PET) has allowed the metabolic processes within the plaque to be detected and quantified directly. The increasing armory of radiotracers has facilitated the imaging of distinct metabolic aspects of atherogenesis and plaque destabilization, including macrophage-mediated inflammatory change, hypoxia, and microcalcification. This imaging modality has not only furthered our understanding of the disease process in vivo with new insights into mechanisms but has also been utilized as a non-invasive endpoint measure in the development of novel treatments for atherosclerotic disease. This review provides grounding in the principles of PET imaging of atherosclerosis, the radioligands in use and in development, its research and clinical applications, and future developments for the field.NRE is supported by a research training fellowship from The Dunhill Medical Trust [grant number RTF44/0114]. JMT is supported by a Wellcome Trust research training fellowship (104492/Z/ 14/Z). MMC is part-supported by the Royal College of Surgeons of England Fellowship Program. JHFR is part-supported by the HEFCE, the NIHR Cambridge Biomedical Research Centre, the British Heart Foundation, and the Wellcome Trus

    Textures of Nematic Liquid Crystal Cylindric-Section Droplets Confined by Chemically Patterned Surfaces

    Get PDF
    The director fields adopted by nematic liquid crystals (LCs) that are confined by the surface to form long, thin droplets are investigated using polarising optical microscopy. Samples are produced by de-wetting of the LC on a surface patterned with alternating high-surface energy and low-surface energy stripes of 10–30 μm width. The droplets obtained are expected to adopt a profile which is that of a longitudinal section of a cylinder and, as this suggests, the director fields observed are variants in the case where the LC is constrained in a cylindrical capillary or fibre. Hence, when there is normal anchoring at the air interface, the textures observed are related to the well-known escaped radial texture (for the nematic LC mixture E7) or plane polar texture (for the LC mixture MLC6609). More surprising is the observation that the nematic LC mixture MLC7023, which is anchored in a planar or tilted manner at the air interface, also gives what appears to be an escaped radial director field. As an exploration of the possibility of using these systems in creating sensors, the effects of adding a chiral dopant and of adding water to the substrates are also investigated
    • …
    corecore