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%8Ga-DOTATATE PET n
Identifies Residual

Myocardial Inflammation

and Bone Marrow Activation
After Myocardial Infarction

Myocardial infarction (MI) healing occurs in 2 phases:
first an inflammatory phase, where clearance of
necrotic debris occurs, followed by a reparative phase
characterized by angiogenesis, granulation tissue
formation, and attempts to repair the extracellular
matrix. While efficient healing relies on coordinated
mobilization of monocytes to the damaged myocar-
dium, with resolution of the acute inflammatory
response by ~10 to 14 days, excessive inflammation
impairs myocardial salvage and promotes adverse
cardiac remodeling.

In ischemic heart failure, pro-inflammatory mac-
rophages persist long after the formation of healed
scar in remote and border zones of the infarcted,
remodeled heart because of maladaptive changes in
the mononuclear phagocytic network and spleen (1).
An accurate means of diagnosing harmful inflamma-
tion after an MI is urgently needed.

We previously demonstrated that °®Ga-DOTATATE,
a somatostatin receptor subtype-2 positron emission
tomography (PET) ligand, could identify pro-
inflammatory macrophages within atherosclerotic
plaques (2). Here, in this substudy of our original
prospective observational study, we examined
whether ®8Ga-DOTATATE could reveal residual post-
infarction myocardial inflammation.

Patients with an MI within 3 months treated by
percutaneous coronary intervention (“recent MI,”
n = 6), and patients with a past history of MI and
echocardiography data available from after their
event (“old MI,” n = 6), were included. Patients with
equivocal culprit arteries, and those managed medi-
cally or with coronary artery bypass grafting surgery,
were excluded.

ECG-gated PET imaging was performed as previ-
ously described (2). Maximum standardized uptake

values (SUV.x) and tissue-to-blood ratios (TBRmax),
normalized for blood pool activity in the superior
vena cava, were derived blinded to clinical details in
each of the 16 myocardial segments.

Myocardial ®8Ga-DOTATATE and *8F-FDG PET sig-
nals were compared: 1) within infarcted and non-
infarcted segments; 2) to each other; and 3) to tracer
activity in the thoracic vertebral bone marrow as an
experimental marker of systemic inflammation, using
standard nonparametric statistical tests (all data me-
dian [interquartile range (IQR)] unless stated).
Recently infarcted myocardial segments were defined
by clinically adjudicated (treated) culprit artery ter-
ritories, with individual anatomical variation verified
by angiography. In patients with old MI, infarcted
myocardium was determined by echocardiographic
wall motion abnormalities (hypokinesia/akinesia),
assessed independently of the study and prior to
enrollment.

Demographics were similar for recent MI (age 74
years [IQR: 64 to 78 years], 83% male) and old MI
(age 59 years [IQR: 56 to 72 years], all male) pa-
tients. There were 3 ST-segment elevation MIs,
which were all old MIs. PET imaging occurred
35 days (range 21 to 80 days) after recent MIs, and 7
years (range 1.8 to 22 years) after old MIs, with
2 days (range 1 to 21 days) in between ©®%Ga-
DOTATATE and '®F-FDG scans.

68Ga-DOTATATE signals were higher in infarcted
compared with noninfarcted myocardium in patients
with both recent MI (SUV .« 1.60 [IQR: 1.45 to 2.11]
vs. 1.33 [IQR: 1.25 to 1.52]; p = 0.03; TBRpax 2.33
[IQR: 1.55 to 2.71] vs. 1.80 [IQR: 1.32 to 2.22];
p = 0.03) and old MI (SUV a5 2.22 [IQR: 2.03 to 2.50]
vs. 1.78 [IQR: 1.63 to 2.13]; p < 0.0001; TBRyax 2.79
[IQR: 2.47 to 3.23] vs. 1.89 [IQR: 1.52 to 2.36];
P < 0.0001).

Unlike ®8Ga-DOTATATE, which exhibited very low
background myocardial binding in all patients, avid
myocardial ®F-FDG uptake (basal inferoseptum
SUVhax >5) rendered 5 (42%) scans uninterpretable
despite 6-h pre-scan fasting. In the readable scans,
the 2 tracers showed reasonable agreement in the
myocardium (r = 0.38, 95% confidence interval [CI]:
0.20 to 0.53; p < 0.0001). Despite high liver and
spleen %8Ga-DOTATATE activity, focal myocardial
signals were clearly distinguishable in all 5 patients
with inferior infarcts.

Bone marrow ®8Ga-DOTATATE signals were highly
correlated with both infarct-related myocardial
inflammation detected by ®®Ga-DOTATATE (r = 0.83
[95% CI: 0.48 to 0.95]; p = 0.001), and metabolic bone
marrow activity measured by ®F-FDG (r = 0.64 [95%
CI: 0.08 to 0.89]; p = 0.03).
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FIGURE 1 Post-Infarction Myocardial Inflammation Identified by °®Ga-DOTATATE PET

(A) %8Ga-DOTATATE positron emission tomography (PET)-computed tomography image (scale bar: standardized uptake values) demon-
strating residual inflammation (arrow) in (B) partially viable myocardium with subendocardial infarct (dashed arrow), bordering full-
thickness scarring (asterisk) confirmed by late gadolinium enhancement magnetic resonance imaging, 4 years after a left anterior descending
artery myocardial infarction. '®F-FDG positron emission tomography imaging reproduced a near-identical pattern of abnormal myocardial
tracer uptake. Stress magnetic resonance imaging was negative for ischemia.

We found that ®®Ga-DOTATATE identified active
inflammation in recently infarcted myocardium, as
well as old ischemic injury. Our observations agree
with existing clinical data (3), but contradict findings
in mice (4). °®Ga-DOTATATE binding in chronically
damaged myocardium, particularly at the infarct
border (Figure 1), likely reflects residual macrophage-
driven inflammation; however, histological valida-
tion is needed. While tracer binding to myocytes
and/or fibroblasts are possible alternative explana-
tions, transcriptomic data from infarcted mouse
hearts (5) indicates that SSTR2 is not expressed in
these cell types.

Residual myocardial inflammation detected by
58Ga-DOTATATE
prognostic biomarker to study disease mechanisms
and test novel therapies for the inflamed, failing
heart.
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Mini-Sternotomy
Versus Conventional
Sternotomy for Aortic
Valve Replacement

L)

Outcomes following aortic valve replacement (AVR)
surgery are generally excellent, with in-hospital
observed mortality in the United Kingdom of 1.5%
for first-time elective procedures (1). These results
are not observed in all populations; in high-risk
groups, conventional surgery risks perioperative
organ injury and prolonged recovery, with death
occurring in up to 31% of patients within 1 year of
surgery (2). Minimally invasive surgery combines
the durability of surgical repair with reductions in
surgical trauma, which together should reduce
perioperative morbidity. However, reductions in
morbidity and resource use (3) may be confounded
by multiple sources of bias and are at odds with the
limited evidence from trials that have not shown
improved outcomes (4). There is variability in the
uptake of minimally invasive surgery internation-
ally, and conventional AVR remains the mainstay
for the majority of patients. Minimally invasive
surgery requires robust evaluation to better under-
stand its utility.

MAVRIC (Manubrium-limited ministernotomy versus
conventional sternotomy for aortic valve replace-
ment) was a single-center, single-blind, randomized
superiority trial comparing AVR via manubrium-
limited mini-sternotomy using a 5- to 7-cm midline
incision (intervention) and conventional median
sternotomy using a midline incision from the sternal
notch to the xiphisternum (usual care) assessing post-
operative red cell transfusion.

The trial was prospectively registered (ISRCTN29567910)
and published (5). Patients were stratified by baseline
logistic EuroSCORE and hemoglobin and were fol-
lowed for 12 weeks. The primary outcome was the

proportion of patients receiving red cell transfusion
within 7 days of surgery.

Using the Fisher exact test with 90% power, 5%
alpha, we estimated that 260 patients would be
required to detect a 17% reduction in the proportion of
patientsrequiring ared cell transfusion (13% compared
with 30%), using a 2-sided test. Allowing for loss to
follow-up, the sample size was increased to 270.

A total of 271 patients were randomized using a
computer system with concealed allocation; 270
received surgery and contributed to the intention-to-
treat analysis. Patients were blinded to the type of
sternotomy they received until after they completed
their day 2 quality-of-life and pain assessments.

Baseline characteristics were similar between the
groups. Mean age 69.3 + 9.3 years (mini-sternotomy
group) and 68.7 + 8.4 years (conventional group);
range 39 to 88 years. Most were male: 57.8% (mini-
sternotomy group) versus 64.4% (conventional
group). Mean logistic EuroSCORE was 5.2 + 3.5
(mini-sternotomy group) compared with 5.1 + 3.5
(conventional group), and mean hemoglobin at
randomization was 137.9 + 14.3 g/dl (mini-sternotomy
group) and 137.1 + 16.1 g/dl (conventional group).

No difference between the mini-sternotomy and
conventional groups in red cell transfusion within
7 days was found; 23 of 135 patients in each group
received a transfusion, odds ratio: 1.0 (95% confi-
dence interval: 0.5 to 2.0), risk difference 0.0 (95%
confidence interval: —0.1 to 0.1) (Table 1). Mini-
sternotomy reduced chest drain losses, mean 181.6
+ 138.7 ml versus conventional sternotomy, mean
306.9 + 348.6 ml; this did not reduce red cell trans-
fusions. Mean valve size and post-operative valve
function were comparable between mini-sternotomy
and conventional groups: 23 mm versus 24 mm, and
6 of 134 moderate or severe aortic regurgitation
versus 3 of 130, respectively. Mini-sternotomy resul-
ted in longer bypass time of 82.7 + 23.5 min versus
59.6 + 15.1 min and cross-clamp time (64.1 + 17.1 min
vs. 46.3 + 10.7 min). Three experienced consultant
cardiac surgeons (E.A., W.A.O., and A.G.), experts at
performing both techniques, performed all operations
as part of the trial: surgeon A, 58 of each operation;
surgeon B, 43 mini-sternotomy and 35 conventional;
surgeon C, 34 mini-sternotomy and 42 conventional.
A total of 16 patients required conversion from mini
to conventional sternotomy; these occurred due to:
difficult vascular access (n = 9), anesthetic emer-
gency (n = 2), and intraoperative complications
(n = 5). Conventional sternotomy was more cost-
effective, with a 5.8% probability of mini-sternotomy
being cost-effective at a willingness to pay of £20,000/
quality-adjusted life year.
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