120 research outputs found

    Accumulation of Sellafield-derived radiocarbon (14C) in Irish Sea and West of Scotland intertidal shells and sediments

    Get PDF
    The nuclear energy industry produces radioactive waste at various stages of the fuel cycle. In the United Kingdom, spent fuel is reprocessed at the Sellafield facility in Cumbria on the north west coast of England. Waste generated at the site comprises a wide range of radionuclides including radiocarbon (14C) which is disposed of in various forms including highly soluble inorganic carbon within the low level liquid radioactive effluent, via pipelines into the Irish Sea. This 14C is rapidly incorporated into the dissolved inorganic carbon (DIC) reservoir and marine calcifying organisms, e.g. molluscs, readily utilise DIC for shell formation. This study investigated a number of sites located in Irish Sea and West of Scotland intertidal zones. Results indicate 14C enrichment above ambient background levels in shell material at least as far as Port Appin, 265 km north of Sellafield. Of the commonly found species (blue mussel (Mytilus edulis), common cockle (Cerastoderma edule) and common periwinkle (Littorina littorea)), mussels were found to be the most highly enriched in 14C due to the surface environment they inhabit and their feeding behaviour. Whole mussel shell activities appear to have been decreasing in response to reduced discharge activities since the early 2000s but in contrast, there is evidence of continuing enrichment of the carbonate sediment component due to in-situ shell erosion, as well as indications of particle transport of fine 14C-enriched material close to Sellafield

    Ecosystem uptake and transfer of Sellafield-derived radiocarbon (14C). Part 1. The Irish Sea

    Get PDF
    Ecosystem uptake and transfer processes of Sellafield-derived radiocarbon (14C) within the Irish Sea were examined. Highly variable activities in sediment, seawater and biota indicate complex 14C dispersal and uptake dynamics. All east basin biota exhibited 14C enrichments above ambient background while most west basin biota had 14C activities close to background, although four organisms including two slow-moving species were significantly enriched. The western Irish Sea gyre is a suggested pathway for transfer of 14C to the west basin and retention therein. Despite ongoing Sellafield 14C discharges, organic sediments near Sellafield were significantly less enriched than associated benthic organisms. Rapid scavenging of labile, 14C-enriched organic material by organisms and mixing to depth of 14C-enriched detritus arriving at the sediment/water interface are proposed mechanisms to explain this. All commercially important fish, crustaceans and molluscs showed 14C enrichments above background; however, the radiation dose from their consumption is extremely low and radiologically insignificant

    Modeling Small Scale Impacts of Multi-Purpose Platforms: An Ecosystem Approach

    Get PDF
    Aquaculture and marine renewable energy are two expanding sectors of the Blue Economy in Europe. Assessing the long-term environmental impacts in terms of eutrophication and noise is a priority for both the EU Water Framework Directive and the Marine Strategy Framework Directive, and cumulative impacts will be important for the Maritime Spatial Planning under the Integrated Maritime Policy. With the constant expansion of aquaculture production, it is expected that farms might be established further offshore in more remote areas, as high-energy conditions offer an opportunity to generate more power locally using Marine Renewable Energy (MRE) devices. A proposed solution is the co-location of MRE devices and aquaculture systems using Multi-Purpose Platforms (MPPs) comprising offshore wind turbines (OWTs) that will provide energy for farm operations as well as potentially shelter the farm. Disentangling the impacts, conflicts and synergies of MPP elements on the surrounding marine ecosystem is challenging. Here we created a high-resolution spatiotemporal Ecospace model of the West of Scotland, in order to assess impacts of a simple MPP configuration on the surrounding ecosystem and how these impacts can cascade through the food web. The model evaluated the following specific ecosystem responses: (i) top-down control pathways due to distribution changes among top-predators (harbor porpoise, gadoids and seabirds) driven by attraction to the farming sites and/or repulsion/killing due to OWT operations; (ii) bottom-up control pathways due to salmon farm activity providing increasing benthic enrichment predicated by a fish farm particle dispersal model, and sediment nutrient fluxes to the water column by early diagenesis of organic matter (recycled production). Weak responses of the food-web were found for top-down changes, whilst the results showed high sensitivity to increasing changes of bottom-up drivers that cascaded through the food-web from primary producers and detritus to pelagic and benthic consumers, respectively. We assessed the sensitivity of the model to each of these impacts and the cumulative effects on the ecosystem, discuss the capabilities and limitations of the Ecospace modeling approach as a potential tool for marine spatial planning and the impact that these results could have for the Blue Economy and the EU’s New Green Deal

    Can the Common Fisheries Policy achieve Good Environmental Status in exploited ecosystems : the west of Scotland demersal fisheries example

    Get PDF
    Alan R. Baudron, Niall G. Fallon and Paul G. Fernandes were funded by the Horizon 2020 European research project MareFrame (grant No. 613571). Natalia Serpetti and Johanna J. Heymans were funded by the Natural Environment Research Council and Department for Environment, Food and Rural Affairs under the Marine Ecosystems Research Programme (MERP) (grant No. NE/L003279/1). We thank two anonymous reviewers for their insightful comments.Peer reviewedPostprintPostprintPostprintPostprin

    Using ecosystem models to inform ecosystem-based fisheries management in Europe: a review of the policy landscape and related stakeholder needs

    Get PDF
    The need to implement an ecosystem-based fisheries management (EBFM) is enshrined in numerous regulations and strategies, at both global and European level. In practice, it is challenging to implement EBFM because it requires a complex evaluation of interlinked management effects and environmental and climate forcing on multi-species interactions, habitat status and human activities. Ecosystem models are one of the most critical research tools to inform EBFM, because they can integrate a wide variety of data, examine multiple and complex ecosystem interactions, and can make forecasts based on specific management scenarios. However, despite clear progress in marine ecosystem modelling, many models do not address policy goals and targets, which hinders uptake in policy. In this paper, we review the global and European policies and implementing bodies which directly or indirectly have a repercussion on the implementation of EBFM. Moreover, we highlight specific stakeholder needs related to the implementation of EBFM in European waters, which ecosystem models could help address. We review the policy commitments that drive these needs and the concerns raised by stakeholders during a survey and dedicated workshop. Key topics of concern were effects of climate change; bycatch; protected areas/fisheries restricted areas; and reducing the impacts of trawling. Stakeholders also provided specific questions related to these topics which ecosystem models could help address. Scenario and data results visualizations, as well as specific barriers in using the results of ecosystem models for decision-making are also discussed. A close involvement of stakeholders in scenario development and in designing graphical outputs is important, and can help overcome some of the main barriers that can hinder uptake of models and scenarios, including a lack of understanding of the benefits and limits of ecosystem models; insufficient involvement and interaction with stakeholders; and inadequate characterization of uncertainties.publishedVersio

    Ecosystem uptake and transfer of Sellafield-derived radiocarbon (14C) part 2 : the west of Scotland

    Get PDF
    Ecosystem uptake and transfer of Sellafield-derived radiocarbon (14C) were examined within the West of Scotland marine environment. The dissolved inorganic carbon component of seawater, enriched in14C, is transported to the West of Scotland where it is transferred through the marine food web. Benthic and pelagic biota with variable life-spans living in the North Channel and Clyde Sea show comparable14C activities. This suggests that mixing of14C within the Irish Sea results in a relatively constant northwards dispersal of activity. Benthic species in the Firth of Lorn have similar14C enrichments, demonstrating that Irish Sea residual water is the dominant source to this area. Measured14C activities in biota show some similarity to western Irish Sea activities, indicating that dispersion to the West of Scotland is significant with respect to the fate of Sellafield14C releases. Activities measured in commercially important species do not pose any significant radiological risk

    Trophic level-based indicators to track fishing impacts across marine ecosystems

    Get PDF
    Trophic level (TL)-based indicators have been widely used to examine fishing impacts in aquatic ecosystems and the induced biodiversity changes. However, much debate has ensued regarding discrepancies and challenges arising from the use of landings data from commercial fisheries to calculate TL indicators. Subsequent studies have started to examine survey-based and model-based indicators. In this paper, we undertake an extensive evaluation of a variety of TL indicators across 9 well-studied marine ecosystems by making use of model- as well as survey and catch-based TL indicators. Using detailed regional information and data on fishing history, fishing intensity, and environmental conditions, we evaluate how well TL indicators are capturing fishing effects at the community level of marine ecosystems. Our results highlight that the differences observed between TL indicator values and trends is dependent on the data source and the TL cut-off point used in the calculations and is not attributable to an intrinsic problem with TL based indicators. All 3 data sources provide useful information about the structural changes in the ecosystem as a result of fishing, but our results indicate that only model-based indicators represent fishing impacts at the whole ecosystem level.JRC.H.1-Water Resource

    Modelling marine trophic transfer of radiocarbon (14C) from a nuclear facility

    Get PDF
    Sellafield marine discharges of 14C are the largest contributor to the global collective dose from the nuclear fuel industry. As such, it is important to understand the fate of these discharges beyond the limitations and scope of empirical analytical investigations for this highly mobile radioactive contaminant. Ecopath with Ecosim (EwE) is widely used to model anthropogenic impacts on ecosystems, such as fishing, although very few EwE studies have modelled the fate of bioavailable contaminants. This work presents, for the first time, a spatial-temporal 14C model utilising recent developments in EwE software to predict the ecological fate of anthropogenic 14C in the marine environment. The model predicted observed trends in 14C activities between different species and through time. It also provided evidence for the integration of Sellafield 14C in species at higher trophic levels through time

    A participatory scenario method to explore the future of marine social‐ecological systems

    Get PDF
    Source at https://doi.org/10.1111/faf.12356.Anticipating future changes in marine social‐ecological systems (MSES) several decades into the future is essential in the context of accelerating global change. This is challenging in situations where actors do not share common understandings, practices, or visions about the future. We introduce a dedicated scenario method for the development of MSES scenarios in a participatory context. The objective is to allow different actors to jointly develop scenarios which contain their multiple visions of the future. The method starts from four perspectives: “fisheries management,” “ecosystem,” “ocean climate,” and “global context and governance” for which current status and recent trends are summarized. Contrasted scenarios about possible futures are elaborated for each of the four single perspectives before being integrated into multiple‐perspective scenarios. Selected scenarios are then developed into storylines. Focusing on individual perspectives until near the end allows actors with diverse cultures, interests and horizons to confront their own notions of the future. We illustrate the method with the exploration of the futures of the Barents Sea MSES by 2050. We emphasize the following lessons learned: first, many actors are not familiar with scenario building and attention must be paid to explaining the purpose, methodology, and benefits of scenarios exercises. Second, although the Barents Sea MSES is relatively well understood, uncertainties about its future are significant. Third, it is important to focus on unlikely events. Fourth, all perspectives should be treated equally. Fifth, as MSES are continuously changing, we can only be prepared for future changes if we collectively keep preparing
    corecore