42 research outputs found

    An Improved MPPT Interleaved Boost Converter for Solar Electric Vehicle Application

    No full text
    International audienceAn interleaved boost dc/dc converter is developed featuring smaller input/output filters, faster dynamic response and lower device stress than conventional designs, for solar electric vehicle (SEV) applications. The converter is connected between the photovoltaic power generation and dc bus in a multisource energy storage system of a SEV. Typically, interleaved converters require a current control loop to reduce the input current ripples, the output voltage ripples, and the size of passive components with high efficiency. A Maximum Power Point Tracking (MPPT) controller for a Photovoltaic (PV) solar system associated to backup source (Battery) guarantees an uninterrupted power supply and assist the propulsion of the vehicle during transients and recover energy during regenerative braking. The design, construction, and testing of an experimental hardware p rototype is presented, with the test results included

    FC/Battery Power Management for Electric Vehicle Based Interleaved DC-DC Boost Converter Topology

    No full text
    International audienceDue to the fact that the environmental issues have become more serious recently, interest in renewable energy systems, such as, fuel-cells (FCs) has increased steadfastly. Among many types of FCs, proton exchange membrane FC (PEMFC) is one of the most promising power sources due to its advantages, such as, low operation temperature, high power density and low emission. However, using only PEMFC for electric vehicle may not be feasible to satisfy the peak demand changes especially during accelerations and braking. So, hybridizing PEMFC and an energy storage system (ESS) decreases the FC cost and improves its performance and life. Battery (B) appears to be the most powerful candidate to hybridize with PEMFC for vehicular applications. Therefore, the performance of PEMFC/B hybridization is limited considerably by the performance of the converter. Thus, a suitable dc-dc converter topology is required. Various isolated and nonisolated converter topologies for FC applications have been proposed in literature. The objective of this study is to design and simulate a fuel cell - interleaved boost dc-dc converter (FC-IBC) for hybrid power systems in electric vehicle application, in order to decrease the FC current ripple. Therefore Energetic efficiency can also be improved. A control strategy capable of determining the desired FC power and keeps the dc voltage around its nominal value by supplying propulsion power and recuperating braking energy is designed and tested with an urbane electric vehicle model

    Speed control of doubly fed induction motor using backstepping control with interval type-2 fuzzy controller

    No full text
    The control of the doubly-fed induction motor is a complex operation because of this motor characterised by a non-linear multivariable dynamics, having settings that change over time and a significant link between the mechanical component and magnetic behavior (flux) (speed and couple). This article then proposes a new strategy of a robust control of this motor, which is decoupled due to the stator flux’s direction. The proposed control is integrated with the backstepping control which based on Lyapunov theory; this approach consists in constructively designing a control law of nonlinear systems by considering some state variables as being virtual commands, and the important branch of artificial intelligence type-2 fuzzy logic. The hybrid control backstepping-fuzzy logic consists in replacing the regulators applied to the backstepping control by regulators based on type-2 fuzzy logic. This control will be evaluated by numerous simulations where there is a parametric and non-parametric variation

    Optimization and Immobilization of Alpha-Amylase from Bacillus subtilis in Calcium Alginate and Calcium Alginate—Cellulosic Residue Beads

    No full text
    In this study, Alpha amylase from Bacillus subtilis was immobilized by entrapment in Calcium Alginate beads (CA). To improve the properties of these beads, alginate was blended with Cellulosic Residue (CR) obtained from sorghumstarch extraction. The conditions of entrapment were optimized for a maximum immobilization yield (Y%) by mathematical statistics, where the 23-full factorial design of experiments was used. The properties of calcium alginate beads were improved by comparing the activity of immobilized enzymes in the hydrolysis of starch. The activity of the immobilized enzyme by Calcium Alginate/Cellulosic Residue (CA/CR) was found to be higher than the Calcium Alginate method. Zn2+ and Cu2+ have inhibitory effects on both immobilized enzymes. The Bacillus subtilis immobilized in alginate can be reused for 7 cycles with 12.7 μmol of reduced sugars and 6 cycles for the entrapped enzyme in CA/CR with 30 μmol of reduced sugars

    Candesartan prevents L-NAME-induced cardio-renal injury in spontaneously hypertensive rats beyond hypotensive effects

    No full text
    Our goal was to assess the cardiovascular and renal protection afforded by angiotensin II type 1-receptor blockade against NG-nitro-L-arginine methyl ester (L-NAME)-exacerbated hypertension in young spontaneously hypertensive rats (SHR), in comparison with the antihypertensive drug, hydralazine. Male SHR were assigned to four groups (n=8 per group): no treatment (controls); L-NAME-treated group (20 mg/kg/day, 10 days, orally); co-treatment with L-NAME and hydralazine (15 mg/kg/day, by gavage); co-treatment with L-NAME and candesartan cilexetil (10 mg/kg/day, by gavage), i.e. at a dose that inhibited acute pressor responses to 5—20 ng angiotensin II. One animal died in the L-NAME group, and tail-cuff systolic blood pressure (SBP) increased significantly compared with controls to 201±5 mmHg. Albumin excretion increased 235-fold in L-NAME-treated rats. Heart weight index averaged 3.5±0.1 and 3.8±0.1 mg/g body weight (p<0.05) in control and L-NAME rats, respectively, indicating moderate cardiac hypertrophy induced by L-NAME. Preglomerular vascular lesions affected 63±6% of interlobular arteries and 10±2% of afferent arterioles (vs. 8±3 and 0.8±0.4% in controls, respectively). Hydralazine and candesartan cilexetil treatment similarly reduced SBP to 153±7, and 165±6 mmHg, respectively. However, candesartan provided more protection, in terms of no significant change in albuminuria (vs. 25-fold increase with hydralazine), regression of cardiac hypertrophy, frequency of vascular lesions and histological indices of renal injury maintained within control values. In conclusion, candesartan cilexetil prevented L-NAME-exacerbated hypertension and associated cardio-renal injury in young SHR, the beneficial effects exceeding those of hydralazine
    corecore