8 research outputs found

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Nanoprobe-based affinity mass spectrometry for selected protein profiling in human plasma

    No full text
    In recent decades, magnetic nanoparticles have emerged as a promising new platform in biomedical applications, particularly bioseparations. We have developed an immunoassay using antibody-conjugated magnetic nanoparticles as an efficient affinity probe to simultaneously preconcentrate and isolate targeted antigens from biological media. We combined this probe with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI MS) to profile proteins in diluted human plasma. The nanoparticles were designed to detect several disease-associated proteins and could be used directly in MALDI MS without an elution step, thereby facilitating multiple antigen screening and the characterization of antigen variants. Plasma antigens bound rapidly (similar to 10 min) to the antibody-conjugated nanoparticles, allowing the assay to be performed within 20 min. With sensitivity of detection in the femtomole range, the nanoscale immunoassay is superior to assays using microscale particles. We applied our method to comparative protein profiling of patients with gastric cancer and healthy individuals and found differential protein expression levels associated with the disease as well as individuals. Given the flexibility of manipulating functional groups on the nanoprobes, their low cost, robustness, and simplicity of the assay, our approach shows promise for targeted proteome profiling in clinical settings

    Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminosae

    No full text

    Nonlinear Interactions of Light and Matter with Absorption

    No full text
    corecore