780 research outputs found

    Leaving the nest: the rise of regional financial arrangements and the future of global governance

    Full text link
    This article examines the impact of regional financial arrangements (RFAs) on the global liquidity regime. It argues that the design of RFAs could potentially alter the global regime, whether by strengthening it and making it more coherent or by decentring the International Monetary Fund (IMF) and destabilizing it. To determine possible outcomes, this analysis deploys a ‘middle‐up’ approach that focuses on the institutional design of these RFAs. It first draws on the rational design of institutions framework to identify the internal characteristics of RFAs that are most relevant to their capabilities and capacities. It then applies these insights to the interactions of RFAs with the IMF, building on Aggarwal's (1998) concept of ‘nested’ versus ‘parallel’ institutions, to create an analytical lens through which to assess the nature and sustainability of nested linkages. Through an analysis of the Chiang Mai Initiative Multilateralization (CMIM) and the Latin American Reserve Fund (FLAR), the article demonstrates the usefulness of this lens. It concludes by considering three circumstances in which fault lines created by these RFAs’ institutional design could be activated, permitting an institution to ‘leave the nest’, including changing intentions of principals, creation of parallel capabilities and facilities, and failure of the global regime to address regional needs in a crisis.The authors would like to thank Veronica Artola, Masatsugu Asakawa, Ana Maria Carrasquilla, Junhong Chang, Paolo Hernando, Hoe Ee Khor, Kazunori Koike, Jae Young Lee, Ser-Jin Lee, Guillermo Perry, Yoichi Nemoto, Freddy Trujillo, Masaaki Watanabe, Yasuto Watanabe, Akihiko Yoshida, and others who wished to remain anonymous, for their generosity in providing in-person interviews. Further, the authors would like to thank various central bank and ministry of finance officials of both FLAR and CMIM member countries. We also thank Jose Antonio Ocampo, Diana Barrowclough, and participants in the 'Beyond Bretton Woods' Workshop at Boston University (where an earlier version of this article was presented in September 2017) for their feedback on our broader research projects on RFAs. Last but not least, the authors wish to thank the anonymous referees for their constructive comments. This work builds upon previous work funded by UNCTAD and the Global Economic Governance Initiative at the Global Development Policy Center at Boston University. (UNCTAD; Global Economic Governance Initiative at the Global Development Policy Center at Boston University)Accepted manuscrip

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Validation of spallation neutron production and propagation within Geant4

    Full text link
    Using simulations to understand backgrounds from muon-induced neutrons is important in designing next-generation low-background underground experiments. Validation of relevant physics within the Geant4 simulation package has been completed by comparing to data from two recent experiments. Verification focused on the production and propagation of neutrons at energies important to underground experiments. Discrepancies were observed between experimental data and the simulation. Techniques were explored to correct for these discrepancies.Comment: 12 pages, 6 figures, 5 tables, submitted to NIM A. 6 Aug 200

    The electron-nucleon cross section in (e,ep)(e,e'p) reactions

    Get PDF
    We examine commonly used approaches to deal with the scattering of electrons from a bound nucleon. Several prescriptions are shown to be related by gauge transformations. Nevertheless, due to current non-conservation, they yield different results. These differences reflect the size of the uncertainty that persists in the interpretation of (e,ep)(e,e'p) experiments.Comment: 6 pp (10 in preprint form), ReVTeX, (+ 4 figures, uuencoded

    Session coalgebras: A coalgebraic view on session types and communication protocols

    Get PDF
    Compositional methods are central to the development and verification of software systems. They allow breaking down large systems into smaller components, while enabling reasoning about the behaviour of the composed system. For concurrent and communicating systems, compositional techniques based on behavioural type systems have received much attention. By abstracting communication protocols as types, these type systems can statically check that programs interact with channels according to a certain protocol, whether the intended messages are exchanged in a certain order. In this paper, we put on our coalgebraic spectacles to investigate session types, a widely studied class of behavioural type systems. We provide a syntax-free description of session-based concurrency as states of coalgebras. As a result, we rediscover type equivalence, duality, and subtyping rela

    The metallic state in disordered quasi-one-dimensional conductors

    Get PDF
    The unusual metallic state in conjugated polymers and single-walled carbon nanotubes is studied by dielectric spectroscopy (8--600 GHz). We have found an intriguing correlation between scattering time and plasma frequency. This relation excludes percolation models of the metallic state. Instead, the carrier dynamics can be understood in terms of the low density of delocalized states around the Fermi level, which arises from the competion between disorder-induced localization and interchain-interactions-induced delocalization.Comment: 4 pages including 4 figure

    Calabi-Yau Fourfolds with Flux and Supersymmetry Breaking

    Get PDF
    In Calabi-Yau fourfold compactifications of M-theory with flux, we investigate the possibility of partial supersymmetry breaking in the three-dimensional effective theory. To this end, we place the effective theory in the framework of general N=2 gauged supergravities, in the special case where only translational symmetries are gauged. This allows us to extract supersymmetry-breaking conditions, and interpret them as conditions on the 4-form flux and Calabi-Yau geometry. For N=2 unbroken supersymmetry in three dimensions we recover previously known results, and we find a new condition for breaking supersymmetry from N=2 to N=1, i.e. from four to two supercharges. An example of a Calabi-Yau hypersurface in a toric variety that satisfies this condition is provided.Comment: 26 page

    Associations of physical activity and screen time with white matter microstructure in children from the general population

    Get PDF
    Physical activity and sedentary behaviors have been linked to a variety of general health benefits and problems. However, few studies have examined how physical activity during childhood is related to brain development, with the majority of work to date focusing on cardio-metabolic health. This study examines the association between physical activity and screen time with white matter microstructure in the general pediatric population. In a sample of 2532 children (10.12 ± 0.58 years; 50.04% boys) from the Generation R Study, a population-based cohort in Rotterdam, the Netherlands, we assessed physical activity and screen time using parent-reported questionnaires. Magnetic resonance imaging of white matter microstructure was conducted using diffusion tensor imaging. Total physical activity was positively associated with global fractional anisotropy (β = 0.057, 95% CI = 0.016, 0.098, p = 0.007) and negatively associated with global mean diffusivity (β = −0.079, 95% CI = −0.120, −0.038, p 0.05). This study provides new evidence that physical activity is modestly associated with white matter microstructure in children. In contrast, complementing other recent evidence on cognition, screen time was not associated with white matter microstructure. Causal inferences from these modest associations must be interpreted cautiously in the absence of longitudinal data. However, these data still offer a promising avenue for future work to explore to what extent physical activity may promote healthy white matter development

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure
    corecore