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Abstract Compositional methods are central to the development and
verification of software systems. They allow breaking down large systems
into smaller components, while enabling reasoning about the behaviour
of the composed system. For concurrent and communicating systems,
compositional techniques based on behavioural type systems have received
much attention. By abstracting communication protocols as types, these
type systems can statically check that programs interact with channels
according to a certain protocol, whether the intended messages are ex-
changed in a certain order. In this paper, we put on our coalgebraic
spectacles to investigate session types, a widely studied class of behavi-
oural type systems. We provide a syntax-free description of session-based
concurrency as states of coalgebras. As a result, we rediscover type equi-
valence, duality, and subtyping relations in terms of canonical coinductive
presentations. In turn, this coinductive presentation makes it possible to
elegantly derive a decidable type system with subtyping for π-calculus
processes, in which the states of a coalgebra will serve as channel protocols.
Going full circle, we exhibit a coalgebra structure on an existing session
type system, and show that the relations and type system resulting from
our coalgebraic perspective agree with the existing ones.

Keywords: Session types · Coalgebra · Process calculi · Coinduction.

1 Introduction

Communication protocols enable interactions between humans and computers
alike, yet different scientific communities rely on different descriptions of protocols:
one community may use textual descriptions, another uses diagrams, and yet
another may use types. There is then a mismatch, which is fruitful and hindering
at the same time. Fruitful, because different views on protocols lead to different
insights and technologies. But hindering, because exactly those insights and
technologies cannot be easily exchanged. With this paper, we wish to provide a
view of protocols that opens up new links between communities and that, at the
same time, contributes new insights into the nature of communication protocols.
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What would such a view of communication protocols be? Software systems
typically consist of concurrent, interacting processes that pass messages over
channels. Protocols are then a description of the possible exchanges on channels,
without ever referring to the exact structure of the processes that use the
channels. Since we may, for example, expect to get an answer only after sending
a question, it is clear that such exchanges have to happen in an appropriate
order. Therefore, protocols have to be a state-based abstraction of communication
behaviour on channels. Because coalgebras provide an abstraction of general
state-based behaviour, our proposed view of communication protocols becomes:
model the states of a protocol as states of a coalgebra and let the coalgebra
govern the exchanges that may happen at each state of the protocol.

The above view of protocols allows us to model protocols as coalgebras. How-
ever, protocols are usually not studied for the sake of their description but to
achieve certain goals: ensuring correct composition of processes, comparing com-
munication behaviour, or refining and abstracting protocols. Session types [19,20]
are an approach to communication correctness for processes that pass messages
along channels. The idea is simple: describe a protocol as a syntactic object (a
type), and use a type system to statically verify that processes adhere to the
protocol. This syntactic approach allows the automatic and efficient verification
of many correctness properties. However, the syntactic approach depends on
choosing one particular representation of protocols and one particular representa-
tion of processes. We show in this paper that our coalgebraic view of protocols
can guarantee correct process composition, and allows us to reason about key
notions in the world of session types, type equivalence, duality and subtyping,
while being completely independent of protocol and process representations.

Our coalgebraic view is best understood by following the distillation process of
ideas on a concrete session type system by Vasconcelos [37]. Consider the session
type S = ?int. !bool. end, which specifies the protocol on one endpoint of a
channel that receives an integer, then outputs a Boolean, and finally terminates
the interaction. Note that the protocol S specifies three different states: an input
state, an output state, and a final state. Moreover, we note that S specifies only
how the channel is seen from one endpoint; the other endpoint needs to use
the channel with the dual protocol !int. ?bool. end. Thus, session type systems
ensure that the states of S are enabled only in the specified order and that the
two channel endpoints implement dual protocols.

A state-based reading of session types is intuitive and is already present
in programming concepts such as typestates [15,32,33], theories of behavioural
contracts [4,6,7,13], and connections between session types and communicat-
ing automata [10,25]. The novelty and insight of the coalgebraic view is that
1. it describes the state-based behaviour of protocols underlying session types,
supporting unrestricted types and delegation, without adhering to any specific
syntax or target programming model; 2. it offers a general framework in which
key notions such as type equivalence, duality, and subtyping arise as instances of
well-known coinductive constructions; and 3. it allows us to derive type systems
for specific process languages, like the π-calculus.
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Session Coalgebras at Work How does this coalgebraic view of protocols work
for general session types? Consider a “mathematical server” that offers three
operations to clients: integer multiplication, Boolean negation and quitting. The
following session type T specifies a protocol to communicate with this server.

T = μX. &

⎧⎪⎨⎪⎩
mul : ?int. ?int. !int. X

neg : ?bool. !bool. X

quit : end

T is a recursive protocol, as indicated by “μX. ”, which can be repeated. A client
can choose, as indicated by &, between the three operations (mul, neg, and quit)
and the protocol then continues with the corresponding actions. For instance,
after choosing mul, the server requests two integers and, once received, promises
to send an integer over the channel. We can see states of the protocol T emerging,
and it remains to provide a coalgebraic view on the actions of the protocol to
obtain what we will call session coalgebras.

q0
&

q6
end

q1
?

q2
?

q3
!

q4
?

q5
!

quit

mu
l

neg

int int

int

bool

bool

Figure 1. Protocol of the mathematical server as a session coalgebra

Fig. 1 depicts a session coalgebra that describes protocol T . It consists of states
q0, . . . , q6, each representing a different state of T , and transitions between these
states to model the evolution of T . Meaning is given to the different states and
transitions through the labels on the states and transitions. The state labels,
written in purple at top-left of the state name, indicate the branching type of
that state. Depending on the branching type, the labels of the transitions bear
different meanings. For instance, q0 is labelled with “&”, which indicates that this
state initiates an external choice. The labels on the three outgoing transitions for
q0 (mul, neg, quit) correspond then to the possible kinds of message for selecting
one of the branches. Continuing, states q1, . . . , q5 are labelled with a request for
data (label ?) or the sending of data (label !), and the outgoing transition labels
indicate the type of the exchanged values (e.g., bool). Finally, state q6 decrees
the end of the protocol. Note that the cyclic character of T occurs as transitions
back to q0; there is no need for an explicit operator to capture recursion.



378 A. C. Keizer et al.

s0
⊕

s6
end

s1
!

s2
!

s3
?

s4
!

s5
?

quit

mu
l

neg

int int

int

bool

bool

Figure 2. Session coalgebra for the client view protocol the of mathematical server

A session coalgebra models the view on one channel endpoint, but to correctly
execute a protocol we also need to consider the dual session coalgebra that
models the other endpoint’s view. In our example, the dual of Fig. 1 is given
by the diagram in Fig. 2, which concerns states s0, . . . , s6. More precisely, the
states qi and si are pairwise dual in the following sense. The external choice
of q0 becomes an internal choice for s0, expressed through the label ⊕, with
exactly the same labels on the transitions leaving s0. This means that whenever
the server’s protocol is in state q0 and the client’s protocol in state s0, then the
client can choose to send one of the three signals to the server, thereby forcing
the server protocol to advance to the corresponding state. All other states turn
from sending states into receiving states and vice versa. We will see that this
duality relation between states of session coalgebras has a natural coinductive
description that can be obtained with the same techniques as bisimilarity. The
duality relation for T will give us then the full picture of the intended protocol.

Suppose a client who would only want to use multiplication once but could
also handle real numbers as inputs. Such a client had to follow the protocol given
by the session coalgebra in Fig. 3, with states r0, . . . , r5.

r0
⊕

r1
!mul

r2
!int

r3
?int

r4
⊕real

r5
endquit

Figure 3. Session coalgebra that uses only part of a mathematical server

In theories of session types, the protocol of Fig. 2 would be a subtype of this one
(cf. [17,16]). Concretely, this new client can also follow the subtype protocol, and
can thus communicate with a server following the protocol of Fig. 1. For session
coalgebras, we recover the same notion of subtyping by using specific simulation
relations that allow us to prove that the behaviour of r0 can be simulated by s0.
Together, simulations and duality provide the foundation of typical session type
systems.
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We have used thus far session types and coalgebras for protocols with simple
control and with exchanges of simple data values. In contrast, rich session type
systems can regulate session delegation, the dynamic allocation and exchange of
channels by processes. Imagine a process that creates a channel, which should
adhere to some protocol T . From an abstract perspective, the process holds both
endpoints of the new channel, and has to send one of them to the process it wishes
to communicate with. To ensure statically that the receiving process respects
the protocol of this new channel, we need to announce this communication as a
transmission of the session type T (via an existing channel) and use T to verify
the receiving process. Session delegation adds expressiveness and flexibility, but
may cause problems in the characterisation of a correct notion of duality [18].
Remarkably, our coalgebraic view of session types makes this characterisation
completely natural.

As an example, consider the type T = μX. ?X. X, which models a channel
endpoint that infinitely often receives channel ends of its own type T . To obtain
the dual of T , we may näıvely try to replace the receive with a send, which
results in the type μX. !X. X. The problem is that the two channel endpoints
would not agree on the type they are sending or receiving, as any dual type of
T needs to send messages of type T . Thus, the correct dual of T would be the
type U = μX. !T. X. Both T and U specify the transmission of non-basic types,
either the recursion variable X or T , in contrast to the mathematical server that
merely stipulated the transmission of basic data values (integers or Booleans).

In our session coalgebras for the mathematical server it sufficed to have simple
data types and branching labels on transitions. However, to represent T and U
we will need another mechanism to express session delegation. We observe that a
transmission in session types consists of the transmitted data and the session
type that the protocol must continue with afterwards. Thus, a transition out of a
transmitting state in a session coalgebra encompasses both a data transition and
a continuation transition. In diagrams of session coalgebras, we indicate the data
transition by a coloured arrow and an arrow connecting the data to
the continuation transition. Using the combined transitions, Fig. 4 redraws the
multiplication part of the mathematical server in Fig. 1.

q0
&

q1
?

q2
?

q3
!

q
int

mul

...

Figure 4. Protocol of mathematical server as session coalgebra
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This way, the transition q1
int

q2 has been replaced by both a data transition
into a new state q and a continuation transition into q2. Moreover, q has been
declared as a data state that expects an integer to be exchanged (label int).

Having added these transitions to our toolbox, we can present the two types T
and U as session coalgebras. The diagram in Fig. 5 shows such a session coalgebra,
in which we name the states suggestively T and U .

U
!

T
?

Figure 5. Session coalgebra for a recursive type T and its dual U

Using this presentation as session coalgebras, it is now straightforward to
coinductively prove that the states T and U are dual: 1. the states have opposite
actions; 2. their data transitions point to equal types; and 3. their continuations
are dual by coinduction. Clearly, the last step needs some justification but it will
turn out that we can appeal to a standard definition of coinduction in terms of
greatest fixed points. This demonstrates that our coalgebraic view on session
types makes the definition of duality truly natural and straightforward.

Up to here, we have discussed session types and coalgebras that are linear,
i.e., they enforce that protocols complete exactly once. In many situations, one
also needs unrestricted types, which enable sharing of channels between processes
that access these channels concurrently. This is the case of a process that offers a
service for other processes, for instance a web server. Session delegation allows us
to create dynamically channels and check their protocols, but the shared channel
for initiating a session [17] has to offer its protocol to an arbitrary number of
clients. Unrestricted types enable us to specify these kind of service offers.

As an example, consider a process that provides a channel for communicating
integers to anyone asking, like a town hall official handing out citizen numbers.
The type U ′ = μX. un !int. X represents the corresponding protocol, where “un”
qualifies the type !int. X as unrestricted. This allows the process holding the
end of a channel with type U ′ to transmit an integer to any process that is
connected to the shared channel, without any restriction on their number. It is
now surprisingly simple to express U ′ in our coalgebraic view: we introduce a new
state label “un” (unrestricted), which expresses that states reachable from this
state can be used arbitrarily as protocols across different processes connecting to
a channel that follow the protocol given by those states. The following diagram
shows a session coalgebra with a state that corresponds to the type U ′.

U ′
un

q1
!

q2
int

Contributions and Related Work. In this paper, we introduce the notion of
session coalgebra, which justifies the state-based behaviour of session types from
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a coalgebraic perspective. This perspective is novel, although specific state-based
description of protocols have been considered before [4,6,7,9,10,13,15,25,32,33].
Using coalgebra as a unifying framework for session types has two advantages:
1. session coalgebras can be defined and studied independently from specific
syntactic formulations, while keeping the operational behaviour of session types;
and 2. we can uncover the innate coinductive nature of key notions in session
types, such as duality, subtyping, and type equivalence through standard coal-
gebraic techniques. In particular, although communicating automata can also
provide syntax-independent characterisations of session types [10,11], such char-
acterisations do not support delegation, an expressive feature which is cleanly
justified in our coalgebraic approach. Coinduction already has been exploited in
the definition of type equivalence [35], subtyping [17,16] and, especially, duality
for systems with recursive types [3,18,24]. Unlike ours, these previous definitions
are language-dependent, as they are tailored to specific process languages and/or
syntactic variants of the type discipline. Session coalgebras enable thus the gen-
eralisation of insights and technologies from specific languages to any protocol
specification that fits under the umbrella of state-based sessions.

To enable the verification of processes against protocols described by session
coalgebras, we also contribute a type system for π-calculus processes, in which
channel types are given by states of an arbitrary session coalgebra. Our type
system revisits the one by Vasconcelos [37] from our coalgebraic perspective, while
extending it with subtyping. Moreover, we provide a type checking algorithm for
that system, provided that the underlying session coalgebra fulfils two intuitive
conditions. In doing so, we show how a specific type syntax can be equipped with
a session coalgebra structure and how the two decidability conditions are reflected
in the type system. This is in contrast to starting with a specific type syntax and
then employing category theoretical ideas [36], where coinductive session types
are encoded in a session type system with parametric polymorphism [5]. Instead,
we show how a session type system can be derived in general from coalgebras.

Organisation Throughout the remaining paper we will turn the sketched ideas
into a coalgebraic framework. We introduce in Sec. 2 a concrete session type
syntax that we will use as illustration of our framework. In Sec. 3, we will define
session coalgebras as coalgebras for an appropriate functor and show that the
type system from Sec. 2 can be equipped with a coalgebraic structure. The
promised coinductive view on type equivalence, duality, subtyping, etc. will be
provided in Sec. 4. Moreover, we will show that these notions are decidable under
certain conditions that hold for any reasonable session type syntax, including
the one from Sec. 2. Up to that point, the session coalgebras only had intrinsic
meaning and were not associated to any process representation. Section 5 sets
forth a type system for π-calculus, in which channels are assigned states of a
session coalgebra as types. The resulting type system features subtyping and
algorithmic type checking, presented in Sec. 6. Some final thoughts are gathered
in Sec. 7. An extended version, available online, collects additional material [22].
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p ::= ?T. T
| !T. T
| &{li : Ti}i∈I

| ⊕{li : Ti}i∈I

q ::= lin | un

T ::= d ∈ D
| end
| q p
| X ∈ Var
| μX.T

Figure 6. Session types over sets of basic data types D and of variables Var

2 Session Types

To motivate the development of session coalgebras, we recall in this section the
concrete syntax of an existing session type system by Vasconcelos [37]. After
building up our intuition, we introduce session coalgebras in Sec. 3 to show they
can represent this concrete type system.

The types of the system that we will be using are generated by the grammar in
Fig. 6, relative to a set of basic data types D and a countable set of type variables
Var. This grammar has three syntactic categories: pretypes p, qualifiers q, and
session types T . A pretype p is simply a communication action: send (!), receive
(?), external choice (&), and internal choice (⊕) indexed by a finite sets I of
labels, followed by one or multiple session types. The simplest session types are
basic data types in D and the completed, or terminated, protocol represented
by end. A pretype and qualifier also form a session type, written as q p. The
“lin” qualifier enforces that the communication action p has to be carried out
exactly once, while the “un” qualifier allows arbitrary use of p. Finally, we can
form recursive session types with the the fixed point operator μ and the use
of type variables. We use the usual notion of α-equivalence, (capture-avoiding)
substitution, and free and bound types variables for session types.

The grammar allows arbitrary recursive types. We let Type be the set of all
T in which recursive types are contractive and closed, which means that they
contain no substrings of the form μX1.μX2 . . . μXn.Xi and no free type variables.

To lighten up notation, we will usually omit the qualifier lin and assume every
type to finalise with end. With these conventions, we write, e.g., ?int. instead
of lin ?int. end and un ?int. for a single unrestricted read.

We assume there is some decidable subtyping preorder ≤D over the basic
types. A type is a subtype of another if the subtype can be used anywhere where
the supertype was accepted. In examples, we use the basic types int, real and
bool, and we assume that int is a subtype of real, as usual.

An important notion is the unfolding of a session type, which we define next:

Definition 1 (Unfolding). The unfolding of a recursive type μX.T is defined
recursively

unfold(μX.T ) = unfold(T [μX.T/X])

For all other T in Type, unfold is the identity: unfold(T ) = T .
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Because we assume that types are contractive, unfold(T ) terminates for all T .
Also, because all types are required to be closed, unfold(T ) can never be a variable
X. Any such variable would have to be bound somewhere before use, meaning it
would have been substituted. Furthermore, unfolding a closed type always yields
another closed type, as each removed binder always causes a substitution of the
bound variable.

3 Session Coalgebra

Here we will discuss session coalgebras, the main contribution of this paper. The
idea is that session coalgebras will be coalgebras for a specific functor F , which
will capture the state labels and the various kinds of transitions that we discussed
in Sec. 1. An important feature of coalgebras in general, and session coalgebras
in particular, is that the states can be given by an arbitrary set. We will leverage
this to define a session coalgebra on the set of types Type introduced in Sec. 2.

Before coming to the definition, let us briefly recall some minimal notions of
category theory. We will not require a lot of category theoretical terminology;
in fact, we will only use the category Set of sets and functions. Moreover, we
will be dealing with functors F : Set → Set on the category Set. Such a functor
allows us to map a set X to a set F (X), and functions f : X → Y to functions
F (f) : F (X) → F (Y ). To be meaningful, a functor must preserve identity and
compositions. That is, F maps the identity function idX : X → X on X to
the identity on F (X): F (idX) = idF (X); and, given functions f : X → Y and
g : Y → Z, we must have F (g ◦ f) = F (g) ◦ F (f).

A central notion is that of the coalgebras for a functor F . A coalgebra is given
by a pair (X, c) of a set X and a function c : X → F (X). For simplicity, we often
leave out X and refer to c as the coalgebra. The general idea is that the set X is
the set of states and that c assigns to every state its one-step behaviour. In the
case of session coalgebras this will be the state labels and outgoing transitions.
Given two coalgebras c : X → F (X) and d : Y → F (Y ), we say that h : X → Y
is a homomorphism, if d ◦ h = F (h) ◦ c. Coalgebras and their homomorphisms
form a category, with the same identity maps and composition as in Set.

We will have to analyse subsets of coalgebras that are closed under transitions.
Given a coalgebra c : X → F (X), we say that d : Y → F (Y ) with Y ⊆ X is a
subcoalgebra of c if the inclusion map Y → X is a coalgebra homomorphism.
Note that in this case c(Y ) ⊆ F (Y ) and thus d is the restriction of c to Y . Hence,
we also refer to Y as subcoalgebra. The subcoalgebra generated by x ∈ X in c,
denoted by 〈x〉c, is the least subset of X that contains x and is a subcoalgebra
of c. Intuitively, it is the set of x and all states that are reachable from x.

Coming to the concrete case of session coalgebras, we now construct a functor
that allows us to capture the state labels and the different kinds of transitions.
Keeping in mind that states of a session coalgebra correspond to states of a
protocol, we need to be able to label the states with enabled operations.

Definition 2 (Operations and Polarities). The operation of a state describes
the action it represents: com marks the transmission (sending or receiving) of a
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value; branch marks an (internal or external) choice; end marks the completed
protocol; bsc marks a basic data type; and un marks an unrestricted type. States
that transmit data (labelled with com) or allow for choice (labelled with branch)
also have a polarity, which can be either in (a receiving action or external choice)
or out (a sending action or internal choice). We let O be the set of all operations
O = {com, branch, end, bsc, un} and P the set of polarities P = {in, out}.

Note that pairs in {com, branch} × P directly correspond to the actions
of a session type: ? = (com, in), ! = (com, out), & = (branch, in) and ⊕ =
(branch, out). We will be using these markers to abbreviate the pairs.

Now that we have the possible operations of a protocol, we need to define the
transitions that may follow each operation. Recall that the transition at a choice
state has to be labelled with messages that resolve that choice. We therefore
assume to be given a set L of possible choice labels. The variable l will be used
to refer to an element of L. P+

<ℵ0
(L) is the set of all finite, non-empty, subsets of

L. Variables L,L1, L2, . . . refer to these finite, non-empty subsets of L.
Our goal is to define a polynomial functor [14] that captures the states labels

and transitions. This requires some further formal language. First, we let ∗ and
d be some fixed, distinct, objects. Second, given sets X and Y , we denote by XY

the set of all (total) functions from Y to X. Finally, given a family of sets {Xi}i∈I

indexed by some set I, their coproduct is the set
∐

i∈I Xi = {(i, x) | i ∈ I, x ∈ Xi}.
We are now ready to define session coalgebras:

Definition 3 (Session Coalgebras). Let A and B be sets defined as follows,
where we recall that D is the set of all basic data types.

A = {com} × P Bcom,p = {∗,d}
∪ {branch} × P × P+

<ℵ0
(L) Bbranch,p,L = L

∪ {end} Bend = ∅
∪ {bsc} ×D Bbsc,d = ∅
∪ {un} Bun = {∗}

The polynomial functor F : Set → Set is defined by

F (X) =
∐
a∈A

XBa

F (f)(a, g) = (a, f ◦ g)

A coalgebra (X, c) for the functor F is called a session coalgebra.

Let us unfold this definition. Given a session coalgebra c : X → F (X) and a
state x ∈ X, we find in c(x) ∈ F (X) the information of x encoded as a tuple
(a, f) with a ∈ A and f : Ba → X. From a, we get directly the operation, and
the polarity for com states, the type of values communicated for bsc states or
the message labels of branch states. The function f encodes the transitions out
of x. The domain of f is exactly the set of labels that have a transition, and is
dependent on the kind of state declared by a.

It is convenient to partition the domain of the transition map f into data and
continuations. Notice how only com states have data transitions, for other states,
all transitions are continuations. As usual, we write dom(f) for the domain of f .
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Definition 4 (Domains). Suppose c(x) = (com, p, f), then the data domain
of f is domD(f) = {d} and the continuation domain is domC(f) = {∗}. In all
other cases, domD(f) = ∅ and domC(f) = dom(f).

3.1 Alternative Presentation of Session Coalgebras

Session coalgebras (X, c) are rather complex. We show how to build up c as the
combination of two simpler functions, denoted σ and δ, so that c(x) = (σ(x), δ(x))
with σ : X → A and δ(x) : Bσ(x) → X. Observe that every state gets an operation
in O assigned, thus we may assume that there is a map op: X → O. Depending
on the operation given by op(x), the label on x will then have different other
ingredients that are captured in the following proposition.

To formulate the proposition, we need some notation. Suppose f : X → I is a
map and i ∈ I. We define the fibre Xf

i of f over i to be Xf
i = {x ∈ X | f(x) = i}.

Moreover, we let the pairing of functions f and g be 〈f, g〉(x) = (f(x), g(x)).

Proposition 1. A session coalgebra (X, c) can equivalently be expressed by
providing the following maps:

op : X → O maps each state to an operation

pol : Xop
com +Xop

branch → P maps com and branch states to a polarity

la : Xop
branch → P+

<ℵ0
(L) maps branch states to a set of labels

da : Xop
bsc → D maps bsc states to their basic type

δa : Xσ
a → XBa maps each state to a transition function,

where

σ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈op, pol〉(x) if op(x) = com

〈op, pol, la〉(x) if op(x) = branch

〈op, da〉(x) if op(x) = bsc

op(x) if op(x) = end or op(x) = un

We specified δa as a family of transition functions to preserve each specific
signature. We can define a single global transition function as δ(x) = δσ(x)(x). This
is how the coalgebra finally becomes c(x) = (σ(x), δ(x)). As long as the provided
maps fit their signatures, this derived function will conform to c : X → F (X).

The procedure also works backwards: given any session coalgebra, we can
derive functions op(x), pol(x), etc. from c(x). We will often use op(x), σ(x), and
δ(x) to refer to those specific parts of an arbitrary session coalgebra.

3.2 Coalgebra of Session Types

In Sec. 1, we informally explained how session types can be represented as states
of a session coalgebra. We will now justify this claim by showing that session
types are, in fact, states of a specific session coalgebra (Type, cType).
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We define the functions op, pol, δ, and la (see Prop. 1) on Type. Using Prop. 1,
we can then derive cType : Type → F (Type). Let us begin with the linear types.

T
cType(T )

op(T ) pol(T ) δ(T ) la(T )

lin ?T. T ′
com

in δ(T )(∗) = T ′

δ(T )(d) = Tlin !T. T ′ out

lin&{li : Ti}i∈I
branch

in
δ(T )(li) = Ti {li | i ∈ I}

lin⊕{li : Ti}i∈I out

Under this definition, la(T ) is indeed finite, by virtue of an expression being
a finite string. The completed protocol end and basic types d are straightfor-
ward: c(end) = (end) and c(d) = (bsc, d) for any d ∈ D. Recursive types are
handled according to their unfolding, c(μX. T ) = c(unfold(μX. T )). Recall that
contractivity ensures that unfold always terminates. As our types are closed, all
recursion variables are substituted during the unfolding of their binder. Con-
sequently, we do not need to define c on these variables. Also note that this
definition results in an equi-recursive interpretation of recursive types.

Session types can also be unrestricted, and consist of a pretype p with a
qualifier un. Session coalgebras have un states to mark unrestricted types; the
continuation describes what the actual interaction is. Thus, we define op(un p) =
un and δ(un p)(∗) = lin p.

Remark 1 (Alternative Syntaxes and their Functors). The unrestricted session
types that we have adopted are fairly standard, but they are not the only ones
in the literature. Most notably, Gay and Hole [17] defined a type [̂T1, . . . , Tn]
that allows infinite reading and writing. To allow for such behaviour in session
coalgebra, we can change Bun to a set of two elements, such a {∗1, ∗2}. Like
internal choice, the two transitions describe an option of which behaviour to
follow, but without sending synchronisation signals. One transition could go to a
read, and the other to a write, both recursively continuing as the original type
[̂T1, . . . , Tn].

It is possible, although not entirely trivial, to change the further definitions
appropriately and get a decidable type checking algorithm encompassing both
the syntax presented in this work, and Gay and Hole’s syntax. We choose not to,
so to keep the presentation simpler.

4 Type Equivalence, Duality and Subtyping

Up to here, we have represented session types as session coalgebras, but we have
not yet given a precise semantics to them. As a first step, we will define three
relations on states: bisimulation, duality, and simulation. Bisimulation is also
called behavioural equivalence for types; we will show that bisimilar types are
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indeed equivalent. Duality specifies complementary types: it tells us which types
can form a correct interaction. Simulation will provide a notion of subtyping:
it tells us when a type can be used where another type was expected. Besides
relations on session coalgebras, we also introduce the parallelizability of states
that allows us to rule out certain troubling unrestricted types. Finally, we will
obtain conditions on coalgebras to ensure the decidability of the three relations
and therefore the type system that we derive in Sec. 5.

In the following, we will denote by RelX the poset P(X ×X) of all relations
on X ordered by inclusion. Recall that a post-fixpoint of a monotone map
g : RelX → RelX is a relation R ∈ RelX with R ⊆ g(R). Note that RelX is a
complete lattice and that therefore any monotone map has a greatest post-fixpoint
by the Knaster-Tarski Theorem [34]. We will define bisimulation, simulation,
and duality as the greatest (post-)fixpoint of monotone functions, which we will
therefore call coinductive definitions. This definition turns out to be intuitively
what we would expect and the interaction of infinite behaviour with other
type features is automatically correct. The coinductive definitions also give us
immediately proof techniques for equivalence, duality and subtyping: to show
that two states are, say, dual we only have to establish a relation that contains
both states and show that the relation is a post-fixpoint. This technique can
then be improved in various ways [30] and we will show that it is decidable for
reasonable session coalgebras.

4.1 Bisimulation

Two states of a coalgebra are said to be bisimilar if they exhibit equivalent
behaviour. We abstract away from the precise structure of a coalgebra and only
consider its observable behaviour. Two states are bisimilar if their labels are
equal and if the states at the end of matching transitions are again bisimilar.
There is one exception to the equality of labels: basic types can be related via
their pre-order, which does not have to coincide with equality.

Fix some coalgebra (X, c) and let c∗ : RelF (X) → RelX be the binary preimage
of c defined as

c∗(R) = {(x, y) | (c(x), c(y)) ∈ R} .

Definition 5. We define the function f∼ : RelX → RelF (X) as

f∼(R) = { ((a, f), (a, f ′)) | (∀α ∈ dom(f)) f(α) R f ′(α)}
∪ { ((bsc, d, f∅), (bsc, d

′, f∅)) | d ≤D d′ ∧ d′ ≤D d }

where f∅ : ∅ → X is the empty function.

It can be easily checked that, both, c∗ and f∼ are monotone maps and thus also
their composition. Thus, the greatest fixpoint in the following definition exists.

Definition 6. A relation R is called a bisimulation if it is a post-fixpoint of
c∗ ◦ f∼. We call the greatest fixpoint bisimilarity and denote it by ∼.
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4.2 Duality

Duality describes exactly opposite types in terms of their polarity. That is, the
dual of input is output and the dual of output is input: in = out and out = in.
We can extend this to tuples a in A, see Def. 3, with the exception of basic types
because they do not describe channels:

(com, p) = (com, p ) (end) = (end)

(branch, p, L) = (branch, p , L) (un) = (un)

(bsc, d) is undefined

The next step is to compare transitions. Continuations of domC(f) need to be
dual. The data types that are sent or received need to be equivalent, hence
transitions of domD(f) need to go to bisimilar states. We capture this idea with
the monotone map f⊥ : RelX → RelF (X) defined as follows.

f⊥(R) =

{
((a, f), ( a , f ′))

∣∣∣∣ (∀α ∈ domC(f)) f(α) R f ′(α) and
(∀β ∈ domD(f)) f(β) ∼ f ′(β)

}
Definition 7. A relation R is called a duality relation if it is a post-fixpoint of
c∗ ◦ f⊥. We call the greatest fixpoint duality and denote it by ⊥.

It is useful to have a function mapping any x ∈ X to their dual x, as long
as duality is defined on x. However, even if duality is defined on x, the dual
state might not be in X. Thus, we define the dual closure of X as the set
X⊥ = X ∪{x | σ(x) is defined}, where x is understood to be an arbitrary state
not in X and distinct from y for any states y ∈ X with x �= y. For any of the
original states, c⊥(x) = c(x), but for the new states we define σ⊥(x) = σ(x) and

δ⊥(x )(α) = δ(x)(α) for all α ∈ domC(f), and
δ⊥(x )(β) = δ(x)(β) for all β ∈ domD(f)

Thus, the dual closure is a coalgebra such that x ⊥ x for any x. Notice that
taking a dual twice always yields a bisimilar type, so we can define the duality
function as an involution, x = x, rather than adding more variables. Clearly, the
dual closure of a finite set is finite.

Proposition 2. x ⊥ x for every state x such that x is defined.

4.3 Parallelizability

Unlike a linear endpoint, a channel endpoint with an unrestricted type may be
shared between different parallel processes; each of them uses it independently,
without informing the others. Furthermore, there is no way to coordinate which
process receives which message. If the unrestricted endpoint sends a message, it
could be read by a process that just started using the channel, or by a process that
is almost done using the channel, or by a process that is anywhere in between.
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In practice, this means an unrestricted channel can only perform one kind of
communication action. However, session coalgebras allow us to define arbitrarily
complex unrestricted types. For example, μX. un ?int. un ?bool. X is an element
of Type, but we know that sending both int and bool over the same unrestricted
channel causes problems.

Definition 8. Given a coalgebra (X, c), some subset Y ⊆ X is parallelizable,
written par(Y ), if for every x and y in Y one of the following holds: x ∼ y,
σ(x) = un, or σ(y) = un.

We know that un states do not represent communications; any other states,
though, have to represent the same kind of action. We make this slightly stronger
by requiring they are pairwise bisimilar.

Often we are interested in the parallelizability only of a specific state. Recall
that 〈x〉c denotes the subcoalgebra generated by x ∈ X in c.

Definition 9. Let 〈x〉�c be the smallest subset of 〈x〉c that contains x and is
closed under continuation transitions:

〈x〉�c =
⋂

{Y ⊆ X | x ∈ Y and δ(y)(α) ∈ Y for all y ∈ Y and α ∈ domC(δ(y)) }

A state x is parallelizable, written par(x), if 〈x〉�c is parallelizable.

4.4 Simulation and Subtyping

Intuitively, a coalgebra simulates another if the behaviour of the latter “is
contained in” the former. Subtyping, originally defined on session types by Gay
and Hole [17], is a notion of substitutability of types [16]. We will define our
notion of simulation such that it coincides with subtyping, just like bisimulation
provides a notion of type equivalence [17].

Consider a process that expects a channel of type T = ?real. The process
reads a value, and expects it to be a real number and treat it as such. We defined
int as a subtype of real, so the process can operate correctly if it receives an
integer instead; that is, ?int is a subtype of T . Now consider a process that
expects a channel of type !int, on which it can send any integer. In this case
we cannot restrict the channel to a subtype: as all integers are valid where real
numbers are expected, we can generalise the channel type to !real.

Now, in the input case the session types are related (in the subtyping relation)
in the same order as the data types; this is called covariance. For output, the
order is reversed; this is called contravariance. The same idea holds for labelled
choices: the subtype of an external choice can have a subset of choices, while
the subtype of an internal choice can add more options. For all types, it holds
that states reached through transitions are covariant, i.e., if T is a subtype of U ,
continuations of T must be subtypes of continuations (of the same label) of U .
The monotone map h� in Fig. 7 captures these ideas formally.

Definition 10. A relation R is called a simulation if it is a post-fixpoint of
c∗ ◦ h�. We call the greatest fixpoint similarity and denote it by �.
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h�(R) = { ((com, in, f), (com, in, g)) | f(∗) R g(∗) and f(d) R g(d) }
∪ { ((com, out, f), (com, out, g)) | f(∗) R g(∗) and g(d) R f(d) }
∪ { ((branch, in, L1, f),

(branch, in, L2, g)) | L1 ⊆ L2 and ∀l ∈ L1. f(l) R g(l) }
∪ { ((branch, out, L1, f),

(branch, out, L2, g)) | L2 ⊆ L1 and ∀l ∈ L2. f(l) R g(l) }
∪ { ((bsc, d, f∅), (bsc, d

′, f∅)) | d ≤D d′ }
∪ { ((end, f∅), (end, f∅)) }
∪ { ((un, f), (un, g)) | f(∗) R g(∗), and par(f(∗)) iff par(g(∗)) }

Figure 7. Monotone map h� : RelX → RelF (X) that defines simulations
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Figure 8. Simulation for two mathematical server clients (indicated by dotted arrows)

Let us illustrate similarity by means of an example.

Example 1. Recall the two client protocols for our mathematical server in Figs. 2
and 3. We can now prove our claim that the latter can also connect to the server
because it is a supertype of the client protocol in Fig. 2. To do that, we have
to establish a simulation relation between the states of both client protocols. In
Fig. 8, we display a part of both session coalgebras side-by-side and indicate with
dotted arrows the pairs that have to be related by a simulation relation to show
that these states are similar, that is, related by �. It should be noted that we
simulate states from the second coalgebra by that of the first, that is, we show
sk � rk for the shown states. There is one exception to this, namely qint � qreal.

The following proposition records some properties of and tight connections
between the relations that we introduced.

Proposition 3. Bisimilarity ∼ is an equivalence relation, duality ⊥ is symmet-
ric, and similarity � is a preorder. Moreover, for all states x, y, and z of a
session coalgebra, we have that

1. x ∼ y iff x � y and y � x;

2. x ⊥ y and x ⊥ z implies y ∼ z; and

3. x ⊥ y and y ∼ z implies x ⊥ z .
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4.5 Decidability

In a practical type checker, we need an algorithm to decide the relations defined
above. In this subsection we show an algorithm that computes the answer in
finite time for a certain class of types.

Definition 11. A coalgebra c is finitely generated if 〈x〉c is finite for all x.

This restriction is not problematic for types, as the following lemma shows.

Lemma 1. The coalgebra of types (Type, cType) is finitely generated.

To determine whether two states x and y are bisimilar, we need to determine
if there exists a bisimulation R with x R y. We start with the simplest relation
R = {(x, y)}, and ask if this is a bisimulation.

First, we check that for all (u,w) ∈ R, σ(u) = σ(w), or in the case of bsc
states that da(u) ≤D da(w) and da(w) ≤D da(u). If σ(u) �= σ(w) for any pair in
R we know that no superset of R is a bisimulation, and the algorithm rejects.

Second, we check the matching transitions. For every (u,w) ∈ R and α ∈
dom(δ(u)) we check whether (δ(u)(α), δ(w)(α)) ∈ R. If we encounter a missing
pair, we add it to R and ask whether this new relation is a bisimulation, i.e.,
return to the first step. If all destinations for matching transitions are present in
R, then R is, by construction, a bisimulation containing (x, y). Hence, x ∼ y.

This algorithm tries to construct the smallest possible bisimulation containing
(x, y), by only adding strictly necessary pairs. If the algorithm rejects, there is
no such bisimulation; hence, x �∼ y. Additionally, the algorithm only examines
pairs in 〈x〉c × 〈y〉c. If there are finitely many of such pairs, the algorithm will
terminate in finite time

The above described algorithm can be suitably adapted to similarity and
duality, which gives us the following result.

Theorem 1. Bisimilarity, similarity, and duality of any states x and y are
decidable if 〈x〉c and 〈y〉c are finite. Parallelizability of any state x is decidable if
〈x〉�c (Definition 9) is finite.

Corollary 1. Bisimilarity, similarity, and duality are decidable for cType.

5 Typing Rules

Session types are meant to discipline the behaviour of the channels of an interact-
ing process, so as to ensure that prescribed protocols are executed as intended.
Up to here, we have focused on session types (i.e., their representation as session
coalgebras and coinductively-defined relations on them) without committing to a
specific syntax for processes. This choice is on purpose: our goal is to provide
a truly syntax-independent justification for session types. In this section, we
introduce a syntactic notion of processes and rely on session coalgebras to define
the typing rules for a session type system.
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P,Q ::= x〈y〉.P output y on channel x
| x(y).P bind input from channel x to variable y
| x� {li : Pi}i∈I offer choices l1, l2, . . .
| x� l.P make choice l
| P | Q composition
| !P replication
| 0 finished process
| (νxy)P channel creation

Figure 9. Process syntax

5.1 A Session π-calculus

The π-calculus is a formal model of interactive computation in which processes
exchange messages along channels (or names) [26,31]. As such, it is an abstract
framework in which key features such as name mobility, (message-passing) con-
currency, non-determinism, synchronous communication, and infinite behaviour
have rigorous syntactic representations and precise operational meaning. We
consider a session π-calculus based on [37,17], i.e., a variant of the π-calculus
whose operators are tailored to the protocols expressed by session types.

We assume base sets of variables (x, y, z, . . .) and values (v, v′, . . .), which can
be variables or the Boolean constants (true and false). There is also a set of labels
L, ranged over by l, l′, . . .. The syntax of processes (P,Q, . . .) is given by the
grammar in Fig. 9. We discuss the salient aspects of the syntax. A process x〈y〉.P
denotes the output of channel y along channel x, which precedes the execution
of P . Dually, a process x(y).P denotes the input of a value v along channel x,
which precedes the execution of process P [v/y], i.e., the process P in which all
free occurrences of y have been substituted by v. Processes x� {li : Pi}i∈I and
x� l.P implement a labelled choice mechanism. Given a finite index set I, process
x� {li : Pi}i∈I , known as branching, denotes an external choice: the reception of
a label lj (with j ∈ I) along channel x precedes the execution of the continuation
Pj . Process x� l.P , known as selection, denotes an internal choice; it is meant to
interact with a complementary branching. Given processes P and Q, process P | Q
denotes their parallel composition, which enables their simultaneous execution.
The process !P , the replication of P , denotes the composition of infinite copies of
P running in parallel, i.e., P | P | · · · . Process 0 denotes inaction. Finally, process
(νxy)P is arguably the main difference with respect to usual presentations of the
π-calculus, and denotes a restriction operator that declares x and y as covariables,
i.e., as complementary endpoints of the same channel, with scope P .

The operational semantics for processes is defined as a reduction relation
denoted −→, by relying on a notion of structural congruence on processes, denoted
≡. Figure 10 defines these two notions. Intuitively, two processes are structurally
congruent if they are identical in behaviour, but not necessarily in structure. It is
the smallest congruence relation satisfying the axioms in Fig. 10 (bottom). We say
a process P reduces to Q, written P −→ Q, when there is a single execution step
yielding Q from P . We comment on the rules in Fig. 10 (top). r-com formalizes
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Reduction

(νxy)(x〈v〉.P | y(z).Q | R) −→ (νxy)(P | Q[v/z]|R) [r-com]

(νxy)(x� lj .P | y � {li : Qi}i∈I | R) −→ (νxy)(P | Qj | R) (j ∈ I) [r-sync]

P −→ Q

(νxy)P −→ (νxy)Q

P −→ Q

P | R −→ Q | R [r-res][r-par]

P ≡ P ′ P −→ Q Q ≡ Q′

P ′ −→ Q′ [r-cong]

Structural congruence

Parallel composition:

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P !P ≡ P |!P
Scope restriction:

(νxy)(νvw)P ≡ (νvw)(νxy)P (νxy)0 ≡ 0 (νxy)P ≡ (νyx)P

(νxy)(P | Q) ≡ ((νxy)P ) | Q if x and y not free in Q

Figure 10. Reduction semantics

the exchange a value over a channel formed by two covariables. Similarly, r-sync
formalises the synchronisation between a branching and a selection that realises
the labelled choice. Rules r-res and r-par are contextual rules, which allow
reduction to proceed under restriction and parallel composition. Finally, Rule
r-cong says that reduction is closed under structurally congruence: we can use
≡ to promote interactions that match the structure of the rules above.

5.2 Typing Rules

Based on the above, variables P,Q will refer to processes, x, y, z will range over
channels and T, U, V are states of some fixed, but arbitrary, session coalgebra
(X, c). Variables are associated with these states in a context Γ , as described
by Γ ::= ∅ | Γ, x : T . A context is an unordered, finite set of pairs, that may
have at most one pair (x, T ) for each variable x. A context is thus isomorphic
to a (partial) function from a finite set of variables to their types. We use Γ to
denote this isomorphic function as well: Γ (x) = T if (x, T ) ∈ Γ . The domain of
a context is defined accordingly.

We know ‘un’ types are unrestricted, but they are not the only ones.

Definition 12. A type is unrestricted, written un(T ), if its operation is un, end
or bsc. A context is unrestricted, written un(Γ ), if all types in Γ are unrestricted,
i.e., if (x, T ) ∈ Γ implies un(T ). A type is linear, written lin(T ), if it is not
unrestricted. A context is linear, if all its types are linear.

A context Γ may be split into two parts Γ1 and Γ2, such that the linear types
are strictly divided between Γ1 and Γ2, but unrestricted types can be copied.
Context split is a ternary relation, defined by the axioms in Fig. 11. We may
write Γ1 ◦ Γ2 to refer to a context Γ for which Γ = Γ1 ◦ Γ2 is in the context
split relation. Such a context is not necessarily defined for any given contexts;
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∅ = ∅ ◦ ∅ Γ = Γ1 ◦ Γ2 un(T )

Γ, x : T = (Γ1, x : T ) ◦ (Γ2, x : T )
Γ = Γ1 ◦ Γ2

Γ, x : T = (Γ1, x : T ) ◦ Γ2

Γ = Γ1 ◦ Γ2

Γ, x : T = Γ1 ◦ (Γ2, x : T )

Figure 11. Context Split

un(Γ )

Γ � 0

Γ, x : T, y : U � P T ⊥ U

Γ � (νxy)P
[T-Inact][T-Res]

Γ1 � P Γ2 � Q

Γ1 ◦ Γ2 � P | Q
Γ � P un(Γ )

Γ � !P
[T-Par][T-Rep]

c(T ) = (?, f) Γ, y : U, x : f(∗) � P f(d) � U

Γ, x : T � x(y).P
[T-In]

c(T ) = (!, f) Γ, x : f(∗) � P U � f(d)

Γ, x : T, y : U � x〈y〉.P [T-Out]

c(T ) = (&, L1, f) L1 ⊆ L2 Γ, x : f(l) � Pl ∀l ∈ L1

Γ, x : T � x� {l : Pl}l∈L2

[T-Branch]

c(T ) = (⊕, L, f) Γ, x : f(l) � Pl l ∈ L

Γ, x : T � x� l.Pl
[T-Sel]

c(T ) = (un, f) par(T ) Γ, x : f(∗) � P

Γ, x : T � P
[T-Unpack]

Figure 12. Declarative Typing Rules

we implicitly assume its existence when writing Γ1 ◦ Γ2. Notice that the use
of Γ, x : T in the third rule of Fig. 11 carries the assumption that x not in Γ .
Otherwise, Γ, x : T would have two pairs with x, which is not allowed.

The type system is defined by the rules in Fig. 12. A process P is well-formed,
under a context Γ , if there is some inference tree whose root is Γ � P and whose
nodes are all valid instantiations of these type rules. As T-Inact is the only rule
that does not depend on the correctness of another process, it forms the leaves
of such trees. For well-formed processes, the type system guarantees that:

– If the process terminates, then all linear sessions were completed.

– If a process reads a value from a channel, the value has the type specified by
the channel’s session type. If a process receives a label, it is one of the labels
specified by the channel’s session type.

We discuss the typing rules, which can be conveniently read keeping in mind
the notations introduced in Def. 3 and Prop. 1. T-Inact ensures that all linear
channels in the context are interacted with until the type becomes unrestricted. If
our context contains a variable x of type ?int, then the process is required to read
an int from it. Thus, x : ?int. � 0. In contrast, process x(z).0 is well-formed
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for the same context, using T-Inact and T-In:

x : end, z : int � 0

x : ?int � x(z).0

T-Res creates a channel by binding together two covariables x and y, of dual
type. T-Par causes unrestricted channels to be copied and linear channels to
get split between composite processes, ensuring the latter occur in only a single
process. Recall that replication !P is an infinite composition of a single process P ,
hence, a replicated process can only use unrestricted channels. Together, T-Par
and T-Res allow us to introduce new covariables, with new types, and distribute
them. But, only unrestricted types may be copied. Notice that a process does
not specify which types to give the newly bound variables.

v : int � (νxy) x(z).0 | y〈v〉.0
x : un?int � x(z).0 | x(z).0

x :?int � x(z).0 | x(z).0

Each action on a channel has its own rule: T-In handles input, binding the
channel x to the continuation type and y to some supertype of the received type.
T-Out handles output, which requires the sent variable to have a subtype of
whatever type the channel expects to send. T-Branch handles external choice,
where the process needs to offer at least all choices the type describes, coupled
with processes that are correctly typed under the respective continuation types.
T-Sel only checks whether the single label that was chosen by the process was a
valid option, and if the rest of the process is correct under the continuation type.

These rules are only specified for linear states; T-Unpack allows a un state
to be used as if it was the underlying type, as long as it is parallelizable (Def. 8).

We can actually create structures with un that do not have a syntactical
equivalent. For example, let Tend be a state with σ(Tend) = un and δ(Tend)(∗) =
Tend. Just like regular end, Tend allows no interactions on the channel, but it
does not cause a “un” type to be unparallelizable.

T
un

q1
?

q2
un

q
int

Figure 13. Session coalgebra using an alternative completed protocol

The diagram in Fig. 13 describes a parallelizable unrestricted state T such that
each copy of a channel in state T can only do a single receive. However, because
it is unrestricted, we can still copy the channel across threads and read a value
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per copy. We can even read infinitely many values through replication.

x : T � x(y1).x(y2).x(y3).0

x : T � x(y1).0 | x(y2).0 | x(y3).0

x : T � !(x(y).0)

Such a type might be interesting in combination with session delegation. A linear
session could be established by receiving a channel from an unrestricted channel.
By using a structure like T , each thread is guaranteed to establish at most one
private session, but there can be many of such sessions in parallel threads.

In Sec. 4, we defined simulation through the intuition of subtyping as sub-
stitutability in one direction. We see that substitution is indeed allowed for
simulated types.

Theorem 2. The following, more common, rule is admissible from the rules in
Fig. 12.

Γ, x : T � P U � T

Γ, x : U � P

That is, we could add the rule as an axiom, without changing the set of typable
processes. As a corollary, bisimulation of states implies the states are equivalent
with respect to the type system.

Corollary 2. For all bisimilar types T ∼ U , contexts Γ and processes P , it
holds that Γ, x : T � P if and only if Γ, x : U � P .

6 Algorithmic Type Checking

The type rules describe what well-formed processes look like, but do not directly
allow us to decide whether an arbitrary process is well-formed or not. This is
because, beforehand, we do not know:

1. Which type to introduce in reading (T-In) or scope restriction (T-Res), or
2. How to split the context in composite processes (T-Par).

Rather than trying to infer the introduced types, we augment the language
of processes with type annotations:

P ::= . . . | (νxy : T )P | x(y : T ).P

We only need to annotate one type for scope restrictions, as we can create the
other with the duality function. Other productions are kept unchanged.

When checking a process P | Q, we pass along the entire context to P , keeping
track of all linear variables used, and remove those from the context given to
Q. To do this we add an output to the algorithm: in an execution Γ1 � P ; Γ2,
output Γ2 is the subset of Γ1 containing only those variables of the input which
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Γ ÷ ∅ = Γ
Γ1 ÷ F = Γ2, x : T un(T )

Γ1 ÷ (F, x) = Γ2

Γ1 ÷ F = Γ2 x �∈ dom(Γ2)

Γ1 ÷ (F, x) = Γ2

Figure 14. Context Difference

Γ � 0;Γ
Γ1 � P ;Γ2 Γ1 = Γ2

Γ1 � !P ;Γ2
[A-Inact][A-Rep]

Γ1 � P ; Γ2 Γ2 � Q ; Γ3

Γ1 � P | Q ; Γ3

Γ1, x : T, y : T � P ;Γ2

Γ1 � (νxy : T )P ; Γ2 ÷ {x, y} [A-Par][A-Res]

c(T ) = (?, f) f(d) � U Γ1, y : U, x : f(∗) � P ; Γ2

Γ1, x : T � x(y : U).P ; Γ2 ÷ {x, y} [A-In]

c(T ) = (!, f) U � f(d) Γ1, x : f(∗) � P ; Γ2

Γ1, x : T, y : U � x〈y〉.P ; Γ2 ÷ {x} [A-Out]

[A-Branch]

c(T ) = (&, L1, f) L1 ⊆ L2 Γ1, x : f(l) � Pl ; Γl Γ2 = Γl ÷ {x} ∀l ∈ L2

Γ1, x : T � x� {l : Pl}l∈L2 ; Γ2

c(T ) = (⊕, L, f) Γ1, x : f(l) � Pl ; Γ2 l ∈ L

Γ1, x : T � x� l.Pl ; Γ2 ÷ {x} [A-Sel]

c(T ) = (un, f) par(T ) Γ1, x : f(∗) � P ;Γ2

Γ1, x : T � P ; (Γ2 ÷ {x}), x : T
[A-Unpack]

Figure 15. Algorithmic Type Checking Rules

had unrestricted types or were not used in P . We say subset because we want
these variables, if present, to have the same type in Γ2 as in Γ1.

Figure 15 lists the algorithmic versions of the type rules. A-Par, for example,
checks parallel processes as described. By construction, Γ2 is one part of the
context split required to instantiate T-Par. The linear variables of the other
part is exactly those which are present in Γ1 but not in Γ2. This change in
A-Par requires adjusting the other rules. Firstly, we need the algorithm to
accept even when we do not fully complete all sessions of Γ1 in P . We do this by
unconditionally accepting the terminated process. Note that acceptance of the
algorithm now only implies well-formedness if the returned context is unrestricted.

Secondly, the algorithm needs to remove linear variables from the output as
we use them. We do not, however, want to remove any variable that has a linear
type, as that would allow us to accept processes which do not complete all linear
sessions. Thus, we introduce the context difference operator ÷ in Fig. 14. Γ ÷{x}
is the context of all variable/type pairs in Γ minus a potential pair including x,
but is only defined if (x, T ) ∈ Γ implies that T is unrestricted.
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We elaborate on A-Branch; the algorithm is called once for every branch,
yielding a context Γl each time. Excluding x, each branch must use the exact
same set of linear variables. Thus, we require that all these contexts are equal up
to a potential (x, Ul) pair. Specifically, there is some Γ2 such that Γ2 = Γl ÷ {x}
for any l ∈ L2, this Γ2 is the output context.

To motivate this, consider a type T = &{a : Tun, b : end}, where Tun is some
unrestricted type distinct from end, and some process P = x � {a : 0, b : 0}.
Let Γ be some unrestricted context, 0 is well-formed for both Γ, x : Tun and
Γ, x : end; the algorithm agrees.

Γ, x : Tun � 0 ; (Γ, x : Tun)

Γ, x : end � 0 ; (Γ, x : end)

The resulting contexts are not equal. P is well-formed for Γ , so we have to allow x
to have different types in the output of different branches in a complete algorithm.
A-In, A-Out, and A-Sel do not have multiple branches to check, but the ideas
are similar. When introducing a new variable, either through a read or scope
restriction, the new variable is also removed from the output. A-Unpack only
unpacks unrestricted types. We want those to have the same type in the input as
in the output, so we remove the variable and add a pair with the original type.

Take, for example, the process

x : ?int, y : ?int � x(z1).0 | y(z2).0

The variables are split correctly, and both split contexts are unrestricted when
the process is completed, thus it is well-formed.

If, on the other hand, the left process did not complete the linear session,
then the context difference would not have been defined. Take one such process:

x : ?int.?int, y : ?int � x(z1).0 | y(z2).0

We succeed in checking the terminated process of the left part.

x : ?int, y : ?int � 0 ; (x : ?int, y : ?int)

But x has a linear type in the output. (x : ?int, y : ?int)÷ {x} is undefined, so
the algorithm rejects this input entirely. The process was indeed not well-formed,
and no further parallel processes could fix it; the rejection is expected.

For each process and context there is at most one applicable algorithmic rule:
which one is directed by the process syntax and unrestrictedness of a channel
being interacted with.

Under the same assumptions as before (i.e., the session coalgebra describing
the types is finitely generated), this induced type checking algorithm is decidable,
sound, and complete with respect to the type rules defined in Sec. 5.

Theorem 3 (Decidability). The type checking algorithm terminates in finite
time for every input, assuming a finitely generated session coalgebra.
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Having defined algorithmic typechecking, we can go back to the language
that we used to define our typing rules by erasing type annotations in input and
restriction operators. Let erase(·) denote a function on processes defined as

erase((νxy : T ).Q) = (νxy).erase(Q)

erase(x(y : T ).Q) = x(y).erase(Q)

and as an homomorphism on the remaining process constructs. We have:

Theorem 4 (Correctness). For any context Γ and annotated process P ,
Γ1 � erase(P ) iff Γ1 � P ;Γ2 and un(Γ2).

7 Concluding Remarks

We have developed a new, language-independent foundation for session types
by relying on coalgebras. We introduced session coalgebras, which elegantly cap-
ture all communication structures of session types, both linear and unrestricted,
without committing to a specific syntactic formulation for processes and types.
Session coalgebras allow us to rediscover language-independent coinductive defin-
itions for duality, subtyping, and type equivalence. A key idea is to assimilate
channel types to the states of a session coalgebra; we demonstrated this insight by
deriving a session type system for the π-calculus, which revisits and extends that
by Vasconcelos [37], unlocking decidability results and algorithmic type checking.

Interesting strands for future work include extending our coalgebraic toolbox
so as to give a language-independent justification to advanced session type systems,
such as context-free session types [35] and multiparty session types [21]. Another
line concerns extending our coalgebraic view to include language-dependent is-
sues and properties that require a global analysis on session behaviours. Salient
examples are liveness properties such as (dead)lock-freedom and progress: ad-
vanced type systems [23,29,28,8] typically couple (session) types with advanced
mechanisms (such as priority-based annotations and strict partial orders), which
provide a global insight to rule out the circular dependencies between sessions
that are at the heart of stuck processes. Lastly, the whole area of coalgebra now
becomes available to explore session types. One possible direction is to make use
of final coalgebras and modal logic, which would allow us to analyse the behaviour
of session coalgebras. This would be particularly powerful in combination with
composition operations for session coalgebras to break down protocols and type
checking. Another direction is to use session coalgebras to verify other coalgebras
that take on the role of the syntactic π-calculus [12,27] and thereby allowing
also for the exploration of other semantics like manifest sharing [1,2] without
resorting to a specific syntax.
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