221 research outputs found

    Modulating membrane shape and mechanics of minimal cells by light: area increase, softening and interleaflet coupling of membrane models doped with azobenzene-lipid photoswitches

    Get PDF
    Light can effectively interrogate biological systems providing control over complex cellular processes. Particularly advantageous features of photo-induced processes are reversibility, physiological compatibility, and spatiotemporal precision. Understanding the underlying biophysics of light-triggered changes in bio-systems is crucial for cell viability and optimizing clinical applications of photo-induced processes in biotechnology, optogenetics and photopharmacology. Employing membranes doped with the photolipid azobenzene-phosphatidylcholine (azo-PC), we provide a holistic picture of light-triggered changes in membrane morphology, mechanics and dynamics. We combine microscopy of giant vesicles as minimal cell models, Langmuir monolayers, and molecular dynamics simulations. We employ giant vesicle elelctrodeformation as a facile and accurate approach to quantify the magnitude, reversibility and kinetics of light-induced area expansion/shrinkage as a result of azo-PC photoisomerization and content. Area increase as high as ~25% and a 10-fold decrease in the membrane bending rigidity is observed upon trans-to-cis azo-PC isomerization. These results are in excellent agreement with simulations data and monolayers. Simulations also show that trans-to-cis isomerization of azo-PC decreases the membrane leaflet coupling. We demonstrate that light can be used to finely manipulate the shape and mechanics of photolipid-doped minimal cell models and liposomal drug carriers, thus, presenting a promising therapeutic alternative for the repair of cellular disorders.Competing Interest StatementThe authors have declared no competing interest

    Optical polarization grating in semiconductors induced by exciton-polaritons

    Get PDF
    A scattering-state approach is proposed to study the propagation of extremely short optical pulses through semiconductor heterostructures. The formalism is applied to the propagation of exciton polaritons: Our simulated experiments predict the formation of an exciton-induced polarization grating when the light pulse is resonant with the excitonic transition, and suggest proper physical conditions for its experimental detection. Moreover, our analysis of the polariton transport in thick semiconductor layers reveals a decrease of the average polariton group velocity as a function of time, which we ascribe to a re-emission—reabsorption of light by excitons

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Origin of enhanced dynamic nuclear polarization and all-optical nuclear magnetic resonance in GaAs quantum wells

    Get PDF
    Time-resolved optical measurements of electron-spin dynamics in a (110) GaAs quantum well are used to study the consequences of a strongly anisotropic electron g-tensor, and the origin of previously discovered all-optical nuclear magnetic resonance. All components of the g-tensor are measured, and a strong anisotropy even along the in-plane directions is found. The amplitudes of the spin signal allow the study of the spatial directions of the injected spin and its precession axis. Surprisingly efficient dynamic nuclear polarization in a geometry where the electron spins are injected almost transverse to the applied magnetic field is attributed to an enhanced non-precessing electron spin component. The small absolute value of the electron g-factor combined with efficient nuclear spin polarization leads to large nuclear fields that dominate electron spin precession at low temperatures. These effects allow for sensitive detection of all-optical nuclear magnetic resonance induced by periodically excited quantum-well electrons. The mechanism of previously observed Delta m = 2 transitions is investigated and found to be attributable to electric quadrupole coupling, whereas Delta m = 1 transitions show signatures of both quadrupole and electron-spin induced magnetic dipole coupling.Comment: 40 pages, 8 figure

    Dynamic vibronic coupling in InGaAs quantum dots

    Get PDF
    The electron-phonon coupling in self-assembled InGaAs quantum dots is relatively weak at low light intensities, which means that the zero-phonon line in emission is strong compared to the phonon sideband. However, the coupling to acoustic phonons can be dynamically enhanced in the presence of an intense optical pulse tuned within the phonon sideband. Recent experiments have shown that this dynamic vibronic coupling can enable population inversion to be achieved when pumping with a blue-shifted laser and for rapid de-excitation of an inverted state with red detuning. In this paper we confirm the incoherent nature of the phonon-assisted pumping process and explore the temperature dependence of the mechanism. We also show that a combination of blue- and red-shifted pulses can create and destroy an exciton within a timescale ∼ 20 ps determined by the pulse duration and ultimately limited by the phonon thermalisation time

    Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs

    Get PDF
    Antiferromagnets offer spintronic device characteristics unparalleled in ferromagnets owing to their lack of stray fields, THz spin dynamics, and rich materials landscape. Microscopic imaging of antiferromagnetic domains is one of the key prerequisites for understanding physical principles of the device operation. However, adapting common magnetometry techniques to the dipolar-field-free antiferromagnets has been a major challenge. Here we demonstrate in a collinear antiferromagnet a thermoelectric detection method by combining the magneto-Seebeck effect with local heat gradients generated by scanning far-field or near-field techniques. In a 20-nm epilayer of uniaxial CuMnAs we observe reversible 180∘ switching of the Néel vector via domain wall displacement, controlled by the polarity of the current pulses. We also image polarity-dependent 90∘ switching of the Néel vector in a thicker biaxial film, and domain shattering induced at higher pulse amplitudes. The antiferromagnetic domain maps obtained by our laboratory technique are compared to measurements by the established synchrotron-based technique of x-ray photoemission electron microscopy using x-ray magnetic linear dichroism

    High-field high-repetition-rate sources for the coherent THz control of matter

    Get PDF
    Ultrashort flashes of THz light with low photon energies of a few meV, but strong electric or magnetic field transients have recently been employed to prepare various fascinating nonequilibrium states in matter. Here we present a new class of sources based on superradiant enhancement of radiation from relativistic electron bunches in a compact electron accelerator that we believe will revolutionize experiments in this field. Our prototype source generates high-field THz pulses at unprecedented quasicontinuous-wave repetition rates up to the MHz regime. We demonstrate parameters that exceed state-of-the-art laser-based sources by more than 2 orders of magnitude. The peak fields and the repetition rates are highly scalable and once fully operational this type of sources will routinely provide 1 MV/cm electric fields and 0.3 T magnetic fields at repetition rates of few 100 kHz. We benchmark the unique properties by performing a resonant coherent THz control experiment with few 10 fs resolution

    Analysis of norfloxacin ecotoxicity and the relation with its degradation by means of electrochemical oxidation using different anodes

    Full text link
    [EN] In this work, ecotoxicological bioassays based on Lactuca sativa seeds and bioluminescent bacterium (Vibrio fischeri) have been carried out in order to quantify the toxicity of Norfloxacin (NOR) and sodium sulfate solutions, before and after treating them using electrochemical advanced oxidation. The effect of some process variables (anode material, reactor configuration and applied current) on the toxicity evolution of the treated solution has been studied. A NOR solution shows an EC50 (5 days) of 336 mg L-1 towards Lactuca sativa. This threshold NOR concentration decreases with sodium sulfate concentration, in solutions that contain simultaneously Norfloxacin and sodium sulfate. In every case considered in this work, the electrochemical advanced oxidation process increased the toxicity (towards both Lactuca sativa and Vibrio fischeri) of the solution. This toxicity increase is mainly due to the persulfate formation during the electrochemical treatment. From a final solution toxicity point of view, the best results were obtained using a BDD anode in a divided reactor applying the lowest current intensity.The authors are very grateful to the Ministerio de Economia y Competitividad (Projects CTQ2015-65202-C2-1-R and RTI2018-101341-B-C21) for their economic support.Montañés, M.; García Gabaldón, M.; Roca-Pérez, L.; Giner-Sanz, JJ.; Mora-Gómez, J.; Pérez-Herranz, V. (2020). Analysis of norfloxacin ecotoxicity and the relation with its degradation by means of electrochemical oxidation using different anodes. Ecotoxicology and Environmental Safety. 188:1-10. https://doi.org/10.1016/j.ecoenv.2019.109923S110188Banks, M. K., & Schultz, K. E. (2005). Comparison of Plants for Germination Toxicity Tests in Petroleum-Contaminated Soils. Water, Air, and Soil Pollution, 167(1-4), 211-219. doi:10.1007/s11270-005-8553-4Barreto, J. P. d. P., Araujo, K. C. d. F., de Araujo, D. M., & Martinez-Huitle, C. A. (2015). Effect of sp3/sp2 Ratio on Boron Doped Diamond Films for Producing Persulfate. ECS Electrochemistry Letters, 4(12), E9-E11. doi:10.1149/2.0061512eelBueno, F., Borba, F. H., Pellenz, L., Schmitz, M., Godoi, B., Espinoza-Quiñones, F. R., … Módenes, A. N. (2018). Degradation of ciprofloxacin by the Electrochemical Peroxidation process using stainless steel electrodes. Journal of Environmental Chemical Engineering, 6(2), 2855-2864. doi:10.1016/j.jece.2018.04.033Carlesi Jara, C., Fino, D., Specchia, V., Saracco, G., & Spinelli, P. (2007). Electrochemical removal of antibiotics from wastewaters. Applied Catalysis B: Environmental, 70(1-4), 479-487. doi:10.1016/j.apcatb.2005.11.035Charles, J., Crini, G., Degiorgi, F., Sancey, B., Morin-Crini, N., & Badot, P.-M. (2013). Unexpected toxic interactions in the freshwater amphipod Gammarus pulex (L.) exposed to binary copper and nickel mixtures. Environmental Science and Pollution Research, 21(2), 1099-1111. doi:10.1007/s11356-013-1978-1Chen, M., & Chu, W. (2012). Degradation of antibiotic norfloxacin in aqueous solution by visible-light-mediated C-TiO2 photocatalysis. Journal of Hazardous Materials, 219-220, 183-189. doi:10.1016/j.jhazmat.2012.03.074Coledam, D. A. C., Aquino, J. M., Silva, B. F., Silva, A. J., & Rocha-Filho, R. C. (2016). Electrochemical mineralization of norfloxacin using distinct boron-doped diamond anodes in a filter-press reactor, with investigations of toxicity and oxidation by-products. Electrochimica Acta, 213, 856-864. doi:10.1016/j.electacta.2016.08.003Da Silva, S. W., Navarro, E. M. O., Rodrigues, M. A. S., Bernardes, A. M., & Pérez-Herranz, V. (2019). Using p-Si/BDD anode for the electrochemical oxidation of norfloxacin. Journal of Electroanalytical Chemistry, 832, 112-120. doi:10.1016/j.jelechem.2018.10.049Davis, J., Baygents, J. C., & Farrell, J. (2014). Understanding Persulfate Production at Boron Doped Diamond Film Anodes. Electrochimica Acta, 150, 68-74. doi:10.1016/j.electacta.2014.10.104Oliveira, G. A. R. de, Leme, D. M., de Lapuente, J., Brito, L. B., Porredón, C., Rodrigues, L. de B., … Oliveira, D. P. de. (2018). A test battery for assessing the ecotoxic effects of textile dyes. Chemico-Biological Interactions, 291, 171-179. doi:10.1016/j.cbi.2018.06.026Drèze, V., Monod, G., Cravedi, J.-P., Biagianti-Risbourg, S., & Le Gac, F. (2000). Ecotoxicology, 9(1/2), 93-103. doi:10.1023/a:1008976431227Flaherty, C. M., & Dodson, S. I. (2005). Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere, 61(2), 200-207. doi:10.1016/j.chemosphere.2005.02.016González-Pleiter, M., Gonzalo, S., Rodea-Palomares, I., Leganés, F., Rosal, R., Boltes, K., … Fernández-Piñas, F. (2013). Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms: Implications for environmental risk assessment. Water Research, 47(6), 2050-2064. doi:10.1016/j.watres.2013.01.020Gustavson, K. E., Sonsthagen, S. A., Crunkilton, R. A., & Harkin, J. M. (2000). Groundwater toxicity assessment using bioassay, chemical, and toxicity identification evaluation analyses. Environmental Toxicology, 15(5), 421-430. doi:10.1002/1522-7278(2000)15:53.0.co;2-zHeberle, A. N. A., Alves, M. E. P., da Silva, S. W., Klauck, C. R., Rodrigues, M. A. S., & Bernardes, A. M. (2019). Phytotoxicity and genotoxicity evaluation of 2,4,6-tribromophenol solution treated by UV-based oxidation processes. Environmental Pollution, 249, 354-361. doi:10.1016/j.envpol.2019.03.057Iniesta, J. (2001). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 46(23), 3573-3578. doi:10.1016/s0013-4686(01)00630-2Larsson, D. G. J., de Pedro, C., & Paxeus, N. (2007). Effluent from drug manufactures contains extremely high levels of pharmaceuticals. Journal of Hazardous Materials, 148(3), 751-755. doi:10.1016/j.jhazmat.2007.07.008Leme, D. M., & Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its application. Mutation Research/Reviews in Mutation Research, 682(1), 71-81. doi:10.1016/j.mrrev.2009.06.002Li, Y., Niu, J., & Wang, W. (2011). Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: Kinetics, mechanism and toxicity of photolysis products. Chemosphere, 85(5), 892-897. doi:10.1016/j.chemosphere.2011.07.008Liu, P., Zhang, H., Feng, Y., Yang, F., & Zhang, J. (2014). Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chemical Engineering Journal, 240, 211-220. doi:10.1016/j.cej.2013.11.057Mao, F., He, Y., & Gin, K. (2018). Evaluating the Joint Toxicity of Two Benzophenone-Type UV Filters on the Green Alga Chlamydomonas reinhardtii with Response Surface Methodology. Toxics, 6(1), 8. doi:10.3390/toxics6010008Mora-Gómez, J., García-Gabaldón, M., Ortega, E., Sánchez-Rivera, M.-J., Mestre, S., & Pérez-Herranz, V. (2018). Evaluation of new ceramic electrodes based on Sb-doped SnO2 for the removal of emerging compounds present in wastewater. Ceramics International, 44(2), 2216-2222. doi:10.1016/j.ceramint.2017.10.178Mora-Gomez, J., Ortega, E., Mestre, S., Pérez-Herranz, V., & García-Gabaldón, M. (2019). Electrochemical degradation of norfloxacin using BDD and new Sb-doped SnO2 ceramic anodes in an electrochemical reactor in the presence and absence of a cation-exchange membrane. Separation and Purification Technology, 208, 68-75. doi:10.1016/j.seppur.2018.05.017Özcan, A., Atılır Özcan, A., & Demirci, Y. (2016). Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment. Chemical Engineering Journal, 304, 518-526. doi:10.1016/j.cej.2016.06.105Priac, A., Badot, P.-M., & Crini, G. (2017). Treated wastewater phytotoxicity assessment using Lactuca sativa : Focus on germination and root elongation test parameters. Comptes Rendus Biologies, 340(3), 188-194. doi:10.1016/j.crvi.2017.01.002Radix, P., Léonard, M., Papantoniou, C., Roman, G., Saouter, E., Gallotti-Schmitt, S., … Vasseur, P. (2000). Comparison of Four Chronic Toxicity Tests Using Algae, Bacteria, and Invertebrates Assessed with Sixteen Chemicals. Ecotoxicology and Environmental Safety, 47(2), 186-194. doi:10.1006/eesa.2000.1966Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Research, 45(15), 4311-4340. doi:10.1016/j.watres.2011.05.035Seco, J. I., Fernández-Pereira, C., & Vale, J. (2003). A study of the leachate toxicity of metal-containing solid wastes using Daphnia magna. Ecotoxicology and Environmental Safety, 56(3), 339-350. doi:10.1016/s0147-6513(03)00102-7Uzu, G., Sobanska, S., Sarret, G., Muñoz, M., & Dumat, C. (2010). Foliar Lead Uptake by Lettuce Exposed to Atmospheric Fallouts. Environmental Science & Technology, 44(3), 1036-1042. doi:10.1021/es902190uVasconcelos, T. G., Henriques, D. M., König, A., Martins, A. F., & Kümmerer, K. (2009). Photo-degradation of the antimicrobial ciprofloxacin at high pH: Identification and biodegradability assessment of the primary by-products. Chemosphere, 76(4), 487-493. doi:10.1016/j.chemosphere.2009.03.022Wang, W. C., & Freemark, K. (1995). The Use of Plants for Environmental Monitoring and Assessment. Ecotoxicology and Environmental Safety, 30(3), 289-301. doi:10.1006/eesa.1995.1033Wang, X., Sun, C., Gao, S., Wang, L., & Shuokui, H. (2001). Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere, 44(8), 1711-1721. doi:10.1016/s0045-6535(00)00520-8Yang, L.-H., Ying, G.-G., Su, H.-C., Stauber, J. L., Adams, M. S., & Binet, M. T. (2008). GROWTH-INHIBITING EFFECTS OF 12 ANTIBACTERIAL AGENTS AND THEIR MIXTURES ON THE FRESHWATER MICROALGA PSEUDOKIRCHNERIELLA SUBCAPITATA. Environmental Toxicology and Chemistry, 27(5), 1201. doi:10.1897/07-471.1Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y., & Qu, J. (2011). Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials, 185(2-3), 1256-1263. doi:10.1016/j.jhazmat.2010.10.040Zhou, Y., Xu, Y.-B., Xu, J.-X., Zhang, X.-H., Xu, S.-H., & Du, Q.-P. (2015). Combined Toxic Effects of Heavy Metals and Antibiotics on a Pseudomonas fluorescens Strain ZY2 Isolated from Swine Wastewater. International Journal of Molecular Sciences, 16(2), 2839-2850. doi:10.3390/ijms16022839Zhu, L., Santiago-Schübel, B., Xiao, H., Hollert, H., & Kueppers, S. (2016). Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change. Water Research, 102, 52-62. doi:10.1016/j.watres.2016.06.00
    corecore