24 research outputs found

    Molecular beam epitaxy as a growth technique for achieving free-standing zinc-blende GaN and wurtzite AlxGa1-xN

    Get PDF
    Currently there is a high level of interest in the development of ultraviolet (UV) light sources for solid state lighting, optical sensors, surface decontamination and water purification. III-V semiconductor UV LEDs are now successfully manufactured using the AlGaN material system; however, their efficiency is still low. The majority of UV LEDs require AlxGa1-xN layers with compositions in the mid-range between AlN and GaN. Because there is a significant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to those of either GaN or AlN for many ultraviolet device applications. However, the growth of AlxGa1-xN bulk crystals by any standard bulk growth techniques has not been developed so far. There are very strong electric polarization fields inside the wurtzite (hexagonal) group III-nitride structures. The charge separation within quantum wells leads to a significant reduction in the efficiency of optoelectronic device structures. Therefore, the growth of non-polar and semi-polar group III-nitride structures has been the subject of considerable interest recently. A direct way to eliminate polarization effects is to use non-polar (001) zinc-blende (cubic) III-nitride layers. However, attempts to grow zinc-blende GaN bulk crystals by anystandard bulk growth techniques were not successful. Molecular beam epitaxy (MBE) is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. In this study we have used plasma-assisted molecular beam epitaxy (PA MBE) and have produced for the first time free-standing layers of zinc-blende GaN up to 100 μm in thickness and up to 3-inch in diameter. We have shown that our newly developed PA-MBE process for the growth of zinc-blende GaN layers can also be used to achieve free-standing wurtzite AlxGa1-xN wafers. Zinc-blende and wurtzite AlxGa1-xN polytypes can be grown on different orientations of GaAs substrates - (001) and (111)B respectively. We have subsequently removed the GaAs using a chemical etch in order to produce free-standing GaN and AlxGa1-xN wafers. At a thickness of ∼30 μm, free-standing GaN and AlxGa1-xN wafers can easily be handled without cracking. Therefore, free-standing GaN and AlxGa1-xN wafers with thicknesses in the 30–100 μm range may be used as substrates for further growth of GaN and AlxGa1 xN-based structures and devices. We have compared different RF nitrogen plasma sources for the growth of thick nitride AlxGa1-xN films including a standard HD25 source from Oxford Applied Research and a novel high efficiency source from Riber. We have investigated a wide range of the growth rates from 0.2 to 3 μm/h. The use of highly efficient nitrogen RF plasma sources makes PA-MBE a potentially viable commercial process, since free-standing films can be achieved in a single day. Our results have demonstrated that MBE may be competitive with the other group III-nitrides bulk growth techniques in several important areas including production of free-standing zinc-blende (cubic) (Al)GaN and of free-standing wurtzite (hexagonal) AlGaN

    NOA1 Functions in a Temperature-Dependent Manner to Regulate Chlorophyll Biosynthesis and Rubisco Formation in Rice

    Get PDF
    NITRIC OXIDE-ASSOCIATED1 (NOA1) encodes a circularly permuted GTPase (cGTPase) known to be essential for ribosome assembly in plants. While the reduced chlorophyll and Rubisco phenotypes were formerly noticed in both NOA1-supressed rice and Arabidopsis, a detailed insight is still necessary. In this study, by using RNAi transgenic rice, we further demonstrate that NOA1 functions in a temperature-dependent manner to regulate chlorophyll and Rubisco levels. When plants were grown at 30°C, the chlorophyll and Rubisco levels in OsNOA1-silenced plants were only slightly lower than those in WT. However, at 22°C, the silenced plants accumulated far less chlorophyll and Rubisco than WT. It was further revealed that the regulation of chlorophyll and Rubisco occurs at the anabolic level. Etiolated WT seedlings restored chlorophyll and Rubisco accumulations readily once returned to light, at either 30°C or 15°C. Etiolated OsNOA1-silenced plants accumulated chlorophyll and Rubisco to normal levels only at 30°C, and lost this ability at low temperature. On the other hand, de-etiolated OsNOA1-silenced seedlings maintained similar levels of chlorophyll and Rubisco as WT, even after being shifted to 15°C for various times. Further expression analyses identified several candidate genes, including OsPorA (NADPH: protochlorophyllide oxidoreductase A), OsrbcL (Rubisco large subunit), OsRALyase (Ribosomal RNA apurinic site specific lyase) and OsPuf4 (RNA-binding protein of the Puf family), which may be involved in OsNOA1-regulated chlorophyll biosynthesis and Rubisco formation. Overall, our results suggest OsNOA1 functions in a temperature-dependent manner to regulate chlorophyll biosynthesis, Rubisco formation and plastid development in rice

    Predicting impacts of future climate change and hydropower development towards habitats of native and non-native fishes

    No full text
    Climate change and hydropower development are two primary stressors affecting riverine ecosystems and both stressors facilitate invasions by non-native species. However, little study has focused on how habitats of native and non-native fishes may be affected by independent or combined impacts of such stressors. Here we used the Jinsha River as an example to predict habitat change and distributional shift of native and non-native fishes with species distribution models. The Jinsha River Basin has nearly 40 cascade dams constructed or planned and located in the Tibetan Plateau, which is sensitive to future climate change. Two climate change scenarios and future hydropower development were combined to produce five scenarios of future changes. Under the impacts of independent extreme climate change or hydropower development, non-native fishes showed greater habitat gain in total, while native fishes shifted their distribution into tributaries and higher elevations, and impacts were stronger in combined scenarios. Habitat overlap between the two groups also increased in future scenarios. Certain fish traits correlated with stressors in habitat change prediction. River basins with hydropower development were shown to face higher risk of non-native fishes invasion under future climate change. As the most biodiverse river basins globally are threatened by hydropower development, our results emphasize the importance of regulating non-native fish introduction in reservoirs. Our approaches are also applicable to other systems globally to better understand how hydropower development and climate change may increase invasion risk, and therefore help conserve native species effectively. (C) 2019 Elsevier B.V. All rights reserved.</p

    Phylogeographic studies of schizothoracine fishes on the central Qinghai-Tibet Plateau reveal the highest known glacial microrefugia

    No full text
    Pleistocene climatic oscillations have greatly influenced the evolutionary history and distribution pattern of most extant species. However, their effects on species on the Qinghai-Tibet Plateau (QTP) are not well understood. To investigate the effects of past climatic shifts, particularly the Last Glacial Maximum (LGM), on plateau fish, we analysed the phylogeographic structure and demographic history of five closely related taxa of the subfamily Schizothoracinae, a representative endemic taxon of the QTP, from nine endorheic lakes on the central QTP and three peripheral exorheic rivers using the mitochondrial control region (D-loop) sequence and 12 microsatellite (SSR) markers. Phylogram from D-loop haplotypes revealed two well-supported lineages (North and South) separated by the Tanggula Mountains. The results from the D-loop and SSR revealed that endorheic populations possess high genetic diversity and a unique genetic structure. The most recent demographic expansion occurred post-LGM for most endorheic populations and in the last interglacial period for Siling Co and all exorheic populations. Phylogeographic structure, together with species distribution modelling, supports the scenario of multiple glacial refugia on the QTP during the LGM and suggests that Siling Co (4540 m asl) is a cryptic glacial microrefugia for plateau fish, which would be the highest glacial microrefugia known.</p

    Diversity, pattern and ecological drivers of freshwater fish in China and adjacent areas

    No full text
    China is one of the megadiverse freshwater regions in the world, but the detailed diversity inventory, distribution pattern and ecological drivers are incompletely known, which hinders large-scale freshwater diversity conservation and pattern analysis at the global scale. Aiming to fill this knowledge gap, we compiled a comprehensive richness and distribution database of freshwater fishes in China and adject areas based on our long-term survey and exhaustive data collection from 165 hydrologic units at tributary and sub-basin grain. Then, we elucidated a biogeographical pattern using a beta dissimilarity matrix with species presence/absence data and taxonomic relationships. Finally, we evaluated the explanatory power of three hypotheses, i.e., 'area', 'energy', and 'history', in explaining the diversity patterns. A total of 2,063 species utilizing freshwater habitats were identified in the study area. Among them, 1,651 freshwater species were recorded in China, of which 1034 species are endemic to China. Four major freshwater zoogeographic regions, the Palearctic, High Central Asia, East Asia, and South Asia, were identified from a dendrogram, and each region was characterized by different taxonomic categories (i.e., from species to order). 'Historical' factors play the most important role (43.64-62.96% of the total variation), or at least a comparable role to that of contemporary climate, in explaining the freshwater fish diversity patterns (species richness and species endemicity). In conclusion, the uplift of the Qinghai-Tibetan Plateau, nearby orogeny, and the following formation of the East Asian monsoon climate had profound impacts on the diversification and distribution of ichthyofauna in China and adjacent areas
    corecore