681 research outputs found

    Identification of rice chromosome segment substitution line Z322-1-10 and mapping QTLs for agronomic traits from the F<sub>3</sub> population

    Get PDF
    Chromosome segment substitution lines (CSSLs) are powerful tools to combine naturally occurring genetic variants with favorable alleles in the same genetic backgrounds of elite cultivars. An elite CSSL Z322-1-10 was identified from advanced backcrosses between a japonica cultivar Nipponbare and an elite indica restorer Xihui 18 by SSR marker-assisted selection (MAS). The Z322-1-10 line carries five substitution segments distributed on chromosomes 1, 2, 5, 6 and 10 with an average length of 4.80 Mb. Spikilets per panicle, 1000-grain weight, grain length in the Z322-1-10 line are significantly higher than those in Nipponbare. Quantitative trait loci (QTLs) were identified and mapped for nine agronomic traits in an F3 population derived from the cross between Nipponbare and Z322-1-10 using the restricted maximum likelihood (REML) method in the HPMIXED procedure of SAS. We detected 13 QTLs whose effect ranging from 2.45% to 44.17% in terms of phenotypic variance explained. Of the 13 loci detected, three are major QTL (qGL1, qGW5-1 and qRLW5-1) and they explain 34.68%, 44.17% and 33.05% of the phenotypic variance. The qGL1 locus controls grain length with a typical Mendelian dominance inheritance of 3:1 ratio for long grain to short grain. The already cloned QTL qGW5-1 is linked with a minor QTL for grain width qGW5-2 (13.01%) in the same substitution segment. Similarly, the previously reported qRLW5-1 is also linked with a minor QTL qRLW5-2. Not only the study is important for fine mapping and cloning of the gene qGL1, but also has a great potential for molecular breeding

    The relevance of polarized bZ production at LHC

    Get PDF
    We consider the Z polarization asymmetry A_Z=(sigma(Z_R)-sigma(Z_L))/(sigma(Z_R)+sigma(Z_L)) in the process of associated bZ production at the LHC. We show that in the Standard Model (SM) this quantity is essentially given by its Born approximation, remaining almost unaffected by QCD scales and parton distribution functions variations as well as by electroweak corrections. The theoretical quantity that appears in A_Z is the same that provides the LEP1 Z -> b bbar forward-backward asymmetry, the only measured observable still in some contradiction with the SM prediction. In this sense, A_Z would provide the possibility of an independent verification of the possible SM discrepancy, which could reach, if consistency with LEP1 measurements is imposed, values of the relative ten percent size.Comment: 10 pages, 5 eps figure

    Form factors in RQM approaches: constraints from space-time translations

    Full text link
    Different relativistic quantum mechanics approaches have recently been used to calculate properties of various systems, form factors in particular. It is known that predictions, which most often rely on a single-particle current approximation, can lead to predictions with a very large range. It was shown that accounting for constraints related to space-time translations could considerably reduce this range. It is shown here that predictions can be made identical for a large range of cases. These ones include the following approaches: instant form, front form, and "point-form" in arbitrary momentum configurations and a dispersion-relation approach which can be considered as the approach which the other ones should converge to. This important result supposes both an implementation of the above constraints and an appropriate single-particle-like current. The change of variables that allows one to establish the equivalence of the approaches is given. Some points are illustrated with numerical results for the ground state of a system consisting of scalar particles.Comment: 37 pages, 7 figures; further comments in ps 16 and 19; further references; modified presentation of some formulas; corrected misprint

    Performance analysis of packet layer FEC codes and interleaving in FSO channels

    Get PDF
    The combination of forward-error-correction (FEC) and interleaving can be used to improve free-space optical (FSO) communication systems. Recent research has optimized the codeword length and interleaving depth under the assumption of a fixed buffering size, however, how the buffering size influences the system performance remains unsolved. This paper models the system performance as a function of buffering size and FEC recovery threshold, which allows system designers to determine optimum parameters in consideration of the overhead. The modelling is based on statistics of temporal features of correct data reception and burst error length through the measurement of the channel good time and outage time. The experimental results show good coherence with the theoretical values. This method can also be applied in other channels if a Continuous-Time-Markov-Chain (CTMC) model of the channel can be derive

    On the Three-dimensional Central Moment Lattice Boltzmann Method

    Full text link
    A three-dimensional (3D) lattice Boltzmann method based on central moments is derived. Two main elements are the local attractors in the collision term and the source terms representing the effect of external and/or self-consistent internal forces. For suitable choices of the orthogonal moment basis for the three-dimensional, twenty seven velocity (D3Q27), and, its subset, fifteen velocity (D3Q15) lattice models, attractors are expressed in terms of factorization of lower order moments as suggested in an earlier work; the corresponding source terms are specified to correctly influence lower order hydrodynamic fields, while avoiding aliasing effects for higher order moments. These are achieved by successively matching the corresponding continuous and discrete central moments at various orders, with the final expressions written in terms of raw moments via a transformation based on the binomial theorem. Furthermore, to alleviate the discrete effects with the source terms, they are treated to be temporally semi-implicit and second-order, with the implicitness subsequently removed by means of a transformation. As a result, the approach is frame-invariant by construction and its emergent dynamics describing fully 3D fluid motion in the presence of force fields is Galilean invariant. Numerical experiments for a set of benchmark problems demonstrate its accuracy.Comment: 55 pages, 8 figure

    Charm multiplicity and the branching ratios of inclusive charmless b quark decays in the general two-Higgs-doublet models

    Full text link
    In the framework of general two-Higgs-doublet models, we calculate the branching ratios of various inclusive charmless b decays by using the low energy effective Hamiltonian including next-to-leading order QCD corrections, and examine the current status and the new physics effects on the determination of the charm multiplicity ncn_c and semileptonic branching ratio BSLB_{SL}. Within the considered parameter space, the enhancement to the ratio BR(b→sg)BR(b \to s g) due to the charged-Higgs penguins can be as large as a factor of 8 (3) in the model III (II), while the ratio BR(b→nocharm)BR(b \to no charm) can be increased from the standard model prediction of 2.49% to 4.91% (2.99%) in the model III (II). Consequently, the value of BSLB_{SL} and ncn_c can be decreased simultaneously in the model III. The central value of BSLB_{SL} will be lowered slightly by about 0.003, but the ratio ncn_c can be reduced significantly from the theoretical prediction of nc=1.28±0.05n_c= 1.28 \pm 0.05 in the SM to nc=1.23±0.05n_c= 1.23 \pm 0.05, 1.18±0.051.18 \pm 0.05 for mH+=200,100m_{H^+}=200, 100 GeV, respectively. We find that the predicted ncn_c and the measured ncn_c now agree within roughly one standard deviation after taking into account the effects of gluonic charged Higgs penguins in the model III with a relatively light charged Higgs boson.Comment: 25 pages, Latex file, axodraw.sty, 6 figures. Final version to be published in Phys.Rev.

    Franck-Condon Effect in Central Spin System

    Full text link
    We study the quantum transitions of a central spin surrounded by a collective-spin environment. It is found that the influence of the environmental spins on the absorption spectrum of the central spin can be explained with the analog of the Franck-Condon (FC) effect in conventional electron-phonon interaction system. Here, the collective spins of the environment behave as the vibrational mode, which makes the electron to be transitioned mainly with the so-called "vertical transitions" in the conventional FC effect. The "vertical transition" for the central spin in the spin environment manifests as, the certain collective spin states of the environment is favored, which corresponds to the minimal change in the average of the total spin angular momentum.Comment: 8 pages, 8 figure

    Spatial distribution of antioxidant activity in baguette and its modulation of proinflammatory cytokines in RAW264.7 macrophages

    Get PDF
    Baguette is a globally acclaimed bakery staple, composed by a crispy crust and soft crumb, both containing Maillard reaction products (MRPs) with potential bioactivities. However, MRPs’ impacts on the nutritional and health attributes of baguette, particularly in terms of cellular and biological functions, are yet to be clearly elucidated. This study chemically characterizes the crust and crumb of baguettes and investigates the influence of the Maillard reaction on baguette’s nutritional profile, especially in the antioxidant and anti-inflammatory effects. The findings indicate an increase in browning intensity and advanced glycation end products (AGEs) from the baguette’s interior to its exterior, alongside a significant rise in the antioxidant capacity of the crust, suggesting the Maillard reaction’s role in boosting antioxidative properties. Both the crust and crumb demonstrated strong cytocompatibility with immune cells, capable of reducing cellular oxidative stress and regulating intracellular free radical levels. The crust effectively countered peroxyl radical-induced cell membrane hyperpolarization by 91% and completely neutralized the suppression of oxygen respiration in mitochondria, displaying higher efficacy than the crumb. In contrast, crumb extracts were more potent in inhibiting lipopolysaccharide-induced expression of proinflammatory cytokines, such as interleukins-1β (IL-1β) and IL-6, in macrophages. It could provide the fundamental data and cell-based approach for investigating the biological impacts of bread on immune responses, contributing to the refinement and supplementation of nutritional recommendations
    • …
    corecore