3,751 research outputs found

    Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge

    Full text link
    This paper presents a state-of-the-art model for visual question answering (VQA), which won the first place in the 2017 VQA Challenge. VQA is a task of significant importance for research in artificial intelligence, given its multimodal nature, clear evaluation protocol, and potential real-world applications. The performance of deep neural networks for VQA is very dependent on choices of architectures and hyperparameters. To help further research in the area, we describe in detail our high-performing, though relatively simple model. Through a massive exploration of architectures and hyperparameters representing more than 3,000 GPU-hours, we identified tips and tricks that lead to its success, namely: sigmoid outputs, soft training targets, image features from bottom-up attention, gated tanh activations, output embeddings initialized using GloVe and Google Images, large mini-batches, and smart shuffling of training data. We provide a detailed analysis of their impact on performance to assist others in making an appropriate selection.Comment: Winner of the 2017 Visual Question Answering (VQA) Challenge at CVP

    Functionalized nanopore-embedded electrodes for rapid DNA sequencing

    Full text link
    The determination of a patient's DNA sequence can, in principle, reveal an increased risk to fall ill with particular diseases [1,2] and help to design "personalized medicine" [3]. Moreover, statistical studies and comparison of genomes [4] of a large number of individuals are crucial for the analysis of mutations [5] and hereditary diseases, paving the way to preventive medicine [6]. DNA sequencing is, however, currently still a vastly time-consuming and very expensive task [4], consisting of pre-processing steps, the actual sequencing using the Sanger method, and post-processing in the form of data analysis [7]. Here we propose a new approach that relies on functionalized nanopore-embedded electrodes to achieve an unambiguous distinction of the four nucleic acid bases in the DNA sequencing process. This represents a significant improvement over previously studied designs [8,9] which cannot reliably distinguish all four bases of DNA. The transport properties of the setup investigated by us, employing state-of-the-art density functional theory together with the non-equilibrium Green's Function method, leads to current responses that differ by at least one order of magnitude for different bases and can thus provide a much more robust read-out of the base sequence. The implementation of our proposed setup could thus lead to a viable protocol for rapid DNA sequencing with significant consequences for the future of genome related research in particular and health care in general.Comment: 12 pages, 5 figure

    STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology

    Get PDF
    We give a simple tutorial introduction to the Mathematica package STRINGVACUA, which is designed to find vacua of string-derived or inspired four-dimensional N=1 supergravities. The package uses powerful algebro-geometric methods, as implemented in the free computer algebra system Singular, but requires no knowledge of the mathematics upon which it is based. A series of easy-to-use Mathematica modules are provided which can be used both in string theory and in more general applications requiring fast polynomial computations. The use of these modules is illustrated throughout with simple examples.Comment: 21 pages, 9 figure

    Global stability analysis of an idealized compressor blade row. II. Multiple-blade interactions

    Get PDF
    A direct-adjoint mean flow global stability investigation of self-excited instabilities in an idealized, two-dimensional compressor blade row at off-design conditions is carried out. In this second part of the paper, the single-passage analysis is extended to multiblade passages by exploiting the properties of block-circulant matrices and Bloch-wave theory. By using this method, analyses for a large number of blade passages become computationally tangible, and the modal and nonmodal single-passage analysis from the first part of the paper can be augmented by considering multiblade effects arising in larger systems. This work shows that multiblade passages introduce additional unstable 10- and five-periodic synchronization structures arising from a tuned optimal phase relationship that is supported by the larger system. Self-excited low-frequency structures, which cannot be represented within a single-passage computation, are also uncovered and analyzed

    Linear modal instabilities around post-stall swept finite-aspect ratio wings at low Reynolds numbers

    Get PDF
    Linear modal instabilities of flow over finite-span untapered wings have been investigated numerically at Reynolds number 400, at a range of angles of attack and sweep on two wings having aspect ratios 4 and 8. Base flows have been generated by direct numerical simulation, marching the unsteady incompressible three-dimensional Navier-Stokes equations to a steady state, or using selective frequency damping to obtain stationary linearly unstable flows. Unstable three-dimensional linear global modes of swept wings have been identified for the first time using spectral-element time-stepping solvers. The effect of the wing geometry and flow parameters on these modes has been examined in detail. An increase of the angle of attack was found to destabilize the flow, while an increase of the sweep angle had the opposite effect. On unswept wings, TriGlobal analysis revealed that the most unstable global mode peaks in the midspan region of the wake; the peak of the mode structure moves towards the tip as sweep is increased. Data-driven analysis was then employed to study the effects of wing geometry and flow conditions on the nonlinear wake. On unswept wings, the dominant mode at low angles of attack is a Kelvin-Helmholtz-like instability, qualitatively analogous with global modes of infinite-span wings under same conditions. At higher angles of attack and moderate sweep angles, the dominant mode is a structure denominated the interaction mode. At high sweep angles, this mode evolves into elongated streamwise vortices on higher aspect ratio wings, while on shorter wings it becomes indistinguishable from tip-vortex instability.Comment: 41 pages, 27 figure

    Recycling Strategy for Bioaqueous Phase via Catalytic Wet Air Oxidation to Biobased Acetic Acid Solution

    Get PDF
    The bioaqueous phase generated during biomass conversion to biofuel and biochemicals, e.g., fast pyrolysis and ex situ catalytic pyrolysis, contains a large number of organics, leading to a high chemical oxygen demand (COD) for its treatment. In this study, we demonstrate its catalytic conversion to bioacetic acid solution and propose a recycling strategy thereof. We found that the diluted bioaqueous phase (e.g., C content 90%) converted to acetic acid with nondetectable impurities in solution. The solution contains 1.3-1.5 wt % acetic acid and can be directly used for demineralization of biomass in the biorefineries. This recycling strategy enhances the sustainability of the biobased economy and sheds light on production of biobased acetic acid, which has been recognized as a smart drop-in chemical

    A New Method for Finding Vacua in String Phenomenology

    Get PDF
    One of the central problems of string-phenomenology is to find stable vacua in the four dimensional effective theories which result from compactification. We present an algorithmic method to find all of the vacua of any given string-phenomenological system in a huge class. In particular, this paper reviews and then extends hep-th/0606122 to include various non-perturbative effects. These include gaugino condensation and instantonic contributions to the superpotential.Comment: 27 pages, 5 .eps figures. V2: Minor corrections, reference adde
    • …
    corecore