210 research outputs found
THE PERFORMANCE OF BDS RELATIVE POSITIONING USAGE WITH REAL OBSERVATION DATA
With the first phase of COMPASS/BeiDou-2 (BDS) completed, the assessment ofpositioning performance and the characterization of its system are analyzed andpresented. Pseudo-range and carrier phase measurements modulated on B1 and B2have been collected in Shanghai, from 00:00 to 24:00 on 28 December, 2012.Compared with GPS, visibility and measurement quality of BDS’s GEO, IGSO andMEO satellites are analyzed. DOP during the whole orbital period is also analyzedthe results demonstrate that BDS’s HDOP is better than GPS’s one, but VDOPopposite. Furthermore, the result of positioning is also presented and analyzed.Short baselines are estimated by standalone BDS and GPS’s carrier phasemeasurement, respectively, using 48 segmentations of observations during a wholeday (24 hours, each segmentation, is about 30 minutes observation). The analysis ofstatic relative positioning demonstrates that BDS could achieve to millimeter level,corresponding to GPS. Kinematic result is produced by double differenced carrierphase observations with the ambiguities fixed under the constraint of precise shortbaseline.The result shows that the centimeter accuracy could be achieved. Whencomparing the results of kinematic baseline solutions, performance of BDS is worsethan GPS on North and Up components, but oppositely on the component of East inthe kinematic baseline processing
GPS and InSAR Time Series Analysis: Deformation Monitoring Application in a Hydraulic Engineering Resettlement Zone, Southwest China
Booming development of hydropower in China has resulted in increasing concerns about the related resettlement issues. Both global positioning system (GPS) and persistent scatterer interferometric synthetic aperture radar (InSAR) time series analysis are applied to measuring the magnitude and monitoring the spatial and temporal variations of land surface displacement in Hanyuan, a hydraulic engineering resettlement zone, southwest China. The results from the GPS monitoring system established in Hanyuan match well the digital inclinometer results, suggesting that the GPS monitoring system can be employed as a complement to the traditional ground movement monitoring methods. The InSAR time series witness various patterns and magnitudes of deformation in the resettlement zone. Combining the two complementary techniques will overcome the limitations of the single method
Validation of 7 Years in-Flight HY-2A Calibration Microwave Radiometer Products Using Numerical Weather Model and Radiosondes
Haiyang-2A (HY-2A) has been working in-flight for over seven years, and the accuracy of HY-2A calibration microwave radiometer (CMR) data is extremely important for the wet troposphere delay correction (WTC) in sea surface height (SSH) determination. We present a comprehensive evaluation of the HY-2A CMR observation using the numerical weather model (NWM) for all the data available period from October 2011 to February 2018, including the WTC and the precipitable water vapor (PWV). The ERA(ECMWF Re-Analysis)-Interim products from European Centre for Medium-Range Weather Forecasts (ECMWF) are used for the validation of HY-2A WTC and PWV products. In general, a global agreement of root-mean-square (RMS) of 2.3 cm in WTC and 3.6 mm in PWV are demonstrated between HY-2A observation and ERA-Interim products. Systematic biases are revealed where before 2014 there was a positive WTC/PWV bias and after that, a negative one. Spatially, HY-2A CMR products show a larger bias in polar regions compared with mid-latitude regions and tropical regions and agree better in the Antarctic than in the Arctic with NWM. Moreover, HY-2A CMR products have larger biases in the coastal area, which are all caused by the brightness temperature (TB) contamination from land or sea ice. Temporally, the WTC/PWV biases increase from October 2011 to March 2014 with a systematic bias over 1 cm in WTC and 2 mm in PWV, and the maximum RMS values of 4.62 cm in WTC and 7.61 mm in PWV occur in August 2013, which is because of the unsuitable retrieval coefficients and systematic TB measurements biases from 37 GHz band. After April 2014, the TB bias is corrected, HY-2A CMR products agree very well with NWM from April 2014 to May 2017 with the average RMS of 1.68 cm in WTC and 2.65 mm in PWV. However, since June 2017, TB measurements from the 18.7 GHz band become unstable, which led to the huge differences between HY-2A CMR products and the NWM with an average RMS of 2.62 cm in WTC and 4.33 mm in PWV. HY-2A CMR shows high accuracy when three bands work normally and further calibration for HY-2A CMR is in urgent need. Furtherly, 137 global coastal radiosonde stations were used to validate HY-2A CMR. The validation based on radiosonde data shows the same variation trend in time of HY-2A CMR compared to the results from ECMWF, which verifies the results from ECMWF
Coastal Aquaculture Extraction Using GF-3 Fully Polarimetric SAR Imagery: A Framework Integrating UNet++ with Marker-Controlled Watershed Segmentation
Coastal aquaculture monitoring is vital for sustainable offshore aquaculture management. However, the dense distribution and various sizes of aquacultures make it challenging to accurately extract the boundaries of aquaculture ponds. In this study, we develop a novel combined framework that integrates UNet++ with a marker-controlled watershed segmentation strategy to facilitate aquaculture boundary extraction from fully polarimetric GaoFen-3 SAR imagery. First, four polarimetric decomposition algorithms were applied to extract 13 polarimetric scattering features. Together with the nine other polarisation and texture features, a total of 22 polarimetric features were then extracted, among which four were optimised according to the separability index. Subsequently, to reduce the “adhesion” phenomenon and separate adjacent and even adhering ponds into individual aquaculture units, two UNet++ subnetworks were utilised to construct the marker and foreground functions, the results of which were then used in the marker-controlled watershed algorithm to obtain refined aquaculture results. A multiclass segmentation strategy that divides the intermediate markers into three categories (aquaculture, background and dikes) was applied to the marker function. In addition, a boundary patch refinement postprocessing strategy was applied to the two subnetworks to extract and repair the complex/error-prone boundaries of the aquaculture ponds, followed by a morphological operation that was conducted for label augmentation. An experimental investigation performed to extract individual aquacultures in the Yancheng Coastal Wetlands indicated that the crucial features for aquacultures are Shannon entropy (SE), the intensity component of SE (SE_I) and the corresponding mean texture features (Mean_SE and Mean_SE_I). When the optimal features were introduced, our proposed method performed better than standard UNet++ in aquaculture extraction, achieving improvements of 1.8%, 3.2%, 21.7% and 12.1% in F1, IoU, MR and insF1, respectively. The experimental results indicate that the proposed method can handle the adhesion of both adjacent objects and unclear boundaries effectively and capture clear and refined aquaculture boundaries
Role of dimensional crossover on spin-orbit torque efficiency in magnetic insulator thin films
Magnetic insulators (MIs) attract tremendous interest for spintronic
applications due to low Gilbert damping and absence of Ohmic loss. Magnetic
order of MIs can be manipulated and even switched by spin-orbit torques (SOTs)
generated through spin Hall effect and Rashba-Edelstein effect in heavy
metal/MI bilayers. SOTs on MIs are more intriguing than magnetic metals since
SOTs cannot be transferred to MIs through direct injection of electron spins.
Understanding of SOTs on MIs remains elusive, especially how SOTs scale with
the film thickness. Here, we observe the critical role of dimensionality on the
SOT efficiency by systematically studying the MI layer thickness dependent SOT
efficiency in tungsten/thulium iron garnet (W/TmIG) bilayers. We first show
that the TmIG thin film evolves from two-dimensional to three-dimensional
magnetic phase transitions as the thickness increases, due to the suppression
of long-wavelength thermal fluctuation. Then, we report the significant
enhancement of the measured SOT efficiency as the thickness increases. We
attribute this effect to the increase of the magnetic moment density in concert
with the suppression of thermal fluctuations. At last, we demonstrate the
current-induced SOT switching in the W/TmIG bilayers with a TmIG thickness up
to 15 nm. The switching current density is comparable with those of heavy
metal/ferromagnetic metal cases. Our findings shed light on the understanding
of SOTs in MIs, which is important for the future development of ultrathin
MI-based low-power spintronics
Novel blue-emitting KBaGdSi2O7:Eu2+ phosphor used for near-UV white-light LED
Novel blue-emitting KBaGdSi2O7:Eu2+ phosphors were designed and synthesized through solid-state reaction method. The structural properties, concentration, and temperature-dependent luminescence behaviors of these phosphors were investigated in detail in this paper. Studies revealed that KBaGdSi2O7:Eu2+ phosphors have an intense absorption in the broad wavelength ranging from 250 to 400 nm that is suitable for the commercial near-UV LED, and give out intense blue light peaked at 475 nm with a full-width half-maximum of 75 nm. The crystallographic information of KBaGdSi2O7 phase is revealed from XRD pattern by Rietveld refinement. Band gap is derived to be 3.93 eV through diffuse reflection spectra through Kubelka Munk function. The concentration quenching mechanism is identified as the dipole–dipole interaction. Moreover, the thermal quenching experiment was also conducted and the activation energy is calculated as 0.3069 eV, which indicates this novel KBaGdSi2O7:Eu2+ phosphor has good thermal stability. These properties exhibit its potential commercial application for near-UV white-light LEDs (w-LEDs)
Validating HY-2A CMR precipitable water vapor using ground-based and shipborne GNSS observations
The calibration microwave radiometer (CMR) on board the Haiyang-2A (HY-2A) satellite provides wet tropospheric delay correction for altimetry data, which can also contribute to the understanding of climate system and weather processes. The ground-based global navigation satellite system (GNSS) provides precise precipitable water vapor (PWV) with high temporal resolution and could be used for calibration and monitoring of the CMR data, and shipborne GNSS provides accurate PWV over open oceans, which can be directly compared with uncontaminated CMR data. In this study, the HY-2A CMR water vapor product is validated using ground-based GNSS observations of 100 International GNSS Service (IGS) stations along the global coastline and 56 d shipborne GNSS observations over the Indian Ocean. The processing strategy for GNSS data and CMR data is discussed in detail. Special efforts were made in the quality control and reconstruction of contaminated CMR data. The validation result shows that HY-2A CMR PWV agrees well with ground-based GNSS PWV with 2.67 mm as the root mean square (rms) within 100 km. Geographically, the rms is 1.12 mm in the polar region and 2.78 mm elsewhere. The PWV agreement between HY-2A and shipborne GNSS shows a significant correlation with the distance between the ship and the satellite footprint, with an rms of 1.57 mm for the distance threshold of 100 km. Ground-based GNSS and shipborne GNSS agree with HY-2A CMR well
Investigation on Geometry Computation of Spaceborne GNSS-R Altimetry over Topography: Modeling and Validation
The spaceborne Global Navigation Satellite Systems Reflectometry (GNSS-R) offers versatile Earth surface observation. While the accuracy of the computed geometry, required for the implementation of the technique, degrades when Earth’s surface topography is complicated, previous studies ignored the effects of the local terrain surrounding the ideal specular point at a suppositional Earth reference surface. The surface slope and its aspect have been confirmed that it can lead to geolocation-related errors in the traditional radar altimetry, which will be even more intensified in tilt observations. In this study, the effect of large-scale slope on the spaceborne GNSS-R technique is investigated. We propose a new geometry computation strategy based on the property of ellipsoid to carry out forward and inverse calculations of path geometries. Moreover, it can be extended to calculate unusual reflected paths over versatile Earth’s topography by taking the surface slope and aspects into account. A simulation considering the slope effects demonstrates potential errors as large as meters to tens kilometers in geolocation and height estimations in the grazing observation condition over slopes. For validation, a single track over the Greenland surface received by the TechDemoSat 1 (TDS-1) satellite with a slope range from 0% to 1% was processed and analyzed. The results show that using the TanDEM-X 90 m Digital Elevation Model (DEM) as a reference, a slope of 0.6% at an elevation angle of 54 degrees can result in a geolocation inaccuracy of 10 km and a height error of 50 m. The proposed method in this study greatly reduces the standard deviation of geolocations of specular points from 4758 m to 367 m, and height retrievals from 28 m to 5.8 m. Applications associated with topography slopes, e.g., cryosphere could benefit from this method
Field-free spin-orbit torque switching enabled by interlayer Dzyaloshinskii-Moriya interaction
Perpendicularly magnetized structures that are switchable using a spin
current under field-free conditions can potentially be applied in spin-orbit
torque magnetic random-access memory(SOT-MRAM).Several structures have been
developed;however,new structures with a simple stack structure and MRAM
compatibility are urgently needed.Herein,a typical structure in a perpendicular
spin-transfer torque MRAM,the Pt/Co multilayer and its synthetic
antiferromagnetic counterpart with perpendicular magnetic anisotropy, was
observed to possess an intrinsic interlayer chiral interaction between
neighboring magnetic layers,namely the interlayer Dzyaloshinskii-Moriya
interaction (DMI) effect. Furthermore, using a current parallel to the
eigenvector of the interlayer DMI, we switched the perpendicular magnetization
of both structures without a magnetic field, owing to the additional
symmetry-breaking introduced by the interlayer DMI. This SOT switching scheme
realized in the Pt/Co multilayer and its synthetic antiferromagnet structure
may open a new avenue toward practical perpendicular SOT-MRAM and other SOT
devices
- …