9,777 research outputs found

    Algorithmic Algebraic Geometry and Flux Vacua

    Get PDF
    We develop a new and efficient method to systematically analyse four dimensional effective supergravities which descend from flux compactifications. The issue of finding vacua of such systems, both supersymmetric and non-supersymmetric, is mapped into a problem in computational algebraic geometry. Using recent developments in computer algebra, the problem can then be rapidly dealt with in a completely algorithmic fashion. Two main results are (1) a procedure for calculating constraints which the flux parameters must satisfy in these models if any given type of vacuum is to exist; (2) a stepwise process for finding all of the isolated vacua of such systems and their physical properties. We illustrate our discussion with several concrete examples, some of which have eluded conventional methods so far.Comment: 41 pages, 4 figure

    STRINGVACUA: A Mathematica Package for Studying Vacuum Configurations in String Phenomenology

    Get PDF
    We give a simple tutorial introduction to the Mathematica package STRINGVACUA, which is designed to find vacua of string-derived or inspired four-dimensional N=1 supergravities. The package uses powerful algebro-geometric methods, as implemented in the free computer algebra system Singular, but requires no knowledge of the mathematics upon which it is based. A series of easy-to-use Mathematica modules are provided which can be used both in string theory and in more general applications requiring fast polynomial computations. The use of these modules is illustrated throughout with simple examples.Comment: 21 pages, 9 figure

    Exploring the Vacuum Geometry of N=1 Gauge Theories

    Get PDF
    Using techniques of algorithmic algebraic geometry, we present a new and efficient method for explicitly computing the vacuum space of N=1 gauge theories. We emphasize the importance of finding special geometric properties of these spaces in connecting phenomenology to guiding principles descending from high-energy physics. We exemplify the method by addressing various subsectors of the MSSM. In particular the geometry of the vacuum space of electroweak theory is described in detail, with and without right-handed neutrinos. We discuss the impact of our method on the search for evidence of underlying physics at a higher energy. Finally we describe how our results can be used to rule out certain top-down constructions of electroweak physics.Comment: 35 pages, 2 figures, LaTe

    Exploring Positive Monad Bundles And A New Heterotic Standard Model

    Get PDF
    A complete analysis of all heterotic Calabi-Yau compactifications based on positive two-term monad bundles over favourable complete intersection Calabi-Yau threefolds is performed. We show that the original data set of about 7000 models contains 91 standard-like models which we describe in detail. A closer analysis of Wilson-line breaking for these models reveals that none of them gives rise to precisely the matter field content of the standard model. We conclude that the entire set of positive two-term monads on complete intersection Calabi-Yau manifolds is ruled out on phenomenological grounds. We also take a first step in analyzing the larger class of non-positive monads. In particular, we construct a supersymmetric heterotic standard model within this class. This model has the standard model gauge group and an additional U(1)_{B-L} symmetry, precisely three families of quarks and leptons, one pair of Higgs doublets and no anti-families or exotics of any kind.Comment: 48 page

    Vacuum Geometry and the Search for New Physics

    Get PDF
    We propose a new guiding principle for phenomenology: special geometry in the vacuum space. New algorithmic methods which efficiently compute geometric properties of the vacuum space of N=1 supersymmetric gauge theories are described. We illustrate the technique on subsectors of the MSSM. The fragility of geometric structure that we find in the moduli space motivates phenomenologically realistic deformations of the superpotential, while arguing against others. Special geometry in the vacuum may therefore signal the presence of string physics underlying the low-energy effective theory.Comment: 8 pages, LaTeX; v2: revised title, minor changes in wording, reference adde

    Dietary nitrate reduces skeletal muscle oxygenation response to physical exercise : a quantitative muscle functional MRI study

    Get PDF
    © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.Peer reviewedPublisher PD

    Robust Estimator-Based Safety Verification: A Vector Norm Approach

    Full text link
    In this paper, we consider the problem of verifying safety constraint satisfaction for single-input single-output systems with uncertain transfer function coefficients. We propose a new type of barrier function based on a vector norm. This type of barrier function has a measurable upper bound without full state availability. An identifier-based estimator allows an exact bound for the uncertainty-based component of the barrier function estimate. Assuming that the system is safe initially allows an exponentially decreasing bound on the error due to the estimator transient. Barrier function and estimator synthesis is proposed as two convex sub-problems, exploiting linear matrix inequalities. The barrier function controller combination is then used to construct a safety backup controller. And we demonstrate the system in a simulation of a 1 degree-of-freedom human-exoskeleton interaction.Comment: 6 pages, 5 figures. Accepted for publication at the 2020 American Control Conference. Copyright IEEE 202
    corecore