393 research outputs found

    Verticalization of bacterial biofilms

    Full text link
    Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically-aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modeling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an "inverse domino effect". The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15 figure

    Intracranial bleeding in patients with traumatic brain injury: A prognostic study

    Get PDF
    BACKGROUND: Intracranial bleeding (IB) is a common and serious consequence of traumatic brain injury (TBI). IB can be classified according to the location into: epidural haemorrhage (EDH) subdural haemorrhage (SDH) intraparenchymal haemorrhage (IPH) and subarachnoid haemorrhage (SAH). Studies involving repeated CT scanning of TBI patients have found that IB can develop or expand in the 48 hours after injury. If IB enlarges after hospital admission and larger bleeds have a worse prognosis, this would provide a therapeutic rationale for treatments to prevent increase in the extent of bleeding. We analysed data from the Trauma Audit & Research Network (TARN), a large European trauma registry, to evaluate the association between the size of IB and mortality in patients with TBI. METHODS: We analysed 13,962 patients presenting to TARN participating hospitals between 2001 and 2008 with a Glasgow Coma Score (GCS) less than 15 at presentation or any head injury with Abbreviated Injury Scale (AIS) severity code 3 and above. The extent of intracranial bleeding was determined by the AIS code. Potential confounders were age, presenting Glasgow Coma Score, mechanism of injury, presence and nature of other brain injuries, and presence of extra-cranial injuries. The outcomes were in-hospital mortality and haematoma evacuation. We conducted a multivariable logistic regression analysis to evaluate the independent effect of large and small size of IB, in comparison with no bleeding, on patient outcomes. We also conducted a multivariable logistic regression analysis to assess the independent effect on mortality of large IB in comparison with small IB. RESULTS: Almost 46% of patients had at some type of IB. Subdural haemorrhages were present in 30% of the patients, with epidural and intraparenchymal present in approximately 22% each. After adjusting for potential confounders, we found that large IB, wherever located, was associated with increased mortality in comparison with no bleeding. We also found that large IB was associated with an increased risk of mortality in comparison with small IB. The odds ratio for mortality for large SDH, IPH and EDH, in comparison with small bleeds, were: 3.41 (95% CI: 2.684.33), 3.47 (95% CI: 2.265.33) and 2.86 (95% CI: 1.864.38) respectively. CONCLUSION: Large EDH, SDH and IPH are associated with a substantially higher probability of hospital mortality in comparison with small IB. However, the limitations of our data, such as the large proportion of missing data and lack of data on other confounding factors, such as localization of the bleeding, make the results of this report only explanatory. Future studies should also evaluate the effect of IB size on functional outcomes

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    OneG: A Computational Tool for Predicting Cryptic Intermediates in the Unfolding Kinetics of Proteins under Native Conditions

    Get PDF
    Understanding the relationships between conformations of proteins and their stabilities is one key to address the protein folding paradigm. The free energy change (ΔG) of unfolding reactions of proteins is measured by traditional denaturation methods and native hydrogen-deuterium (H/D) exchange methods. However, the free energy of unfolding (ΔGU) and the free energy of exchange (ΔGHX) of proteins are not in good agreement, though the experimental conditions of both methods are well matching to each other. The anomaly is due to any one or combinations of the following reasons: (i) effects of cis-trans proline isomerisation under equilibrium unfolding reactions of proteins (ii) inappropriateness in accounting the baselines of melting curves (iii) presence of cryptic intermediates, which may elude the melting curve analysis and (iv) existence of higher energy metastable states in the H/D exchange reactions of proteins. Herein, we have developed a novel computational tool, OneG, which accounts the discrepancy between ΔGU and ΔGHX of proteins by systematically accounting all the four factors mentioned above. The program is fully automated and requires four inputs: three-dimensional structures of proteins, ΔGU, ΔGU* and residue-specific ΔGHX determined under EX2-exchange conditions in the absence of denaturants. The robustness of the program has been validated using experimental data available for proteins such as cytochrome c and apocytochrome b562 and the data analyses revealed that cryptic intermediates of the proteins detected by the experimental methods and the cryptic intermediates predicted by the OneG for those proteins were in good agreement. Furthermore, using OneG, we have shown possible existence of cryptic intermediates and metastable states in the unfolding pathways of cardiotoxin III and cobrotoxin, respectively, which are homologous proteins. The unique application of the program to map the unfolding pathways of proteins under native conditions have been brought into fore and the program is publicly available at http://sblab.sastra.edu/oneg.htm

    Modeling rare gene variation to gain insight into the oldest biomarker in autism: construction of the serotonin transporter Gly56Ala knock-in mouse

    Get PDF
    Alterations in peripheral and central indices of serotonin (5-hydroxytryptamine, 5-HT) production, storage and signaling have long been associated with autism. The 5-HT transporter gene (HTT, SERT, SLC6A4) has received considerable attention as a potential risk locus for autism-spectrum disorders, as well as disorders with overlapping symptoms, including obsessive-compulsive disorder (OCD). Here, we review our efforts to characterize rare, nonsynonymous polymorphisms in SERT derived from multiplex pedigrees carrying diagnoses of autism and OCD and present the initial stages of our effort to model one of these variants, Gly56Ala, in vivo. We generated a targeting vector to produce the Gly56Ala substitution in the Slc6a4 locus by homologous recombination. Following removal of a neomycin resistance selection cassette, animals exhibiting germline transmission of the Ala56 variant were bred to establish a breeding colony on a 129S6 background, suitable for initial evaluation of biochemical, physiological and behavioral alterations relative to SERT Gly56 (wildtype) animals. SERT Ala56 mice were achieved and exhibit a normal pattern of transmission. The initial growth and gross morphology of these animals is comparable to wildtype littermate controls. The SERT Ala56 variant can be propagated in 129S6 mice without apparent disruption of fertility and growth. We discuss both the opportunities and challenges that await the physiological/behavioral analysis of Gly56Ala transgenic mice, with particular reference to modeling autism-associated traits

    Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity

    Get PDF
    Intra-tumor heterogeneity is one of the biggest challenges in cancer treatment today. Here we investigate tissue-wide gene expression heterogeneity throughout a multifocal prostate cancer using the spatial transcriptomics (ST) technology. Utilizing a novel approach for deconvolution, we analyze the transcriptomes of nearly 6750 tissue regions and extract distinct expression profiles for the different tissue components, such as stroma, normal and PIN glands, immune cells and cancer. We distinguish healthy and diseased areas and thereby provide insight into gene expression changes during the progression of prostate cancer. Compared to pathologist annotations, we delineate the extent of cancer foci more accurately, interestingly without link to histological changes. We identify gene expression gradients in stroma adjacent to tumor regions that allow for re-stratification of the tumor microenvironment. The establishment of these profiles is the first step towards an unbiased view of prostate cancer and can serve as a dictionary for future studies
    corecore