24 research outputs found

    The Interplay of Variants Near LEKR and CCNL1 and Social Stress in Relation to Birth Size

    Get PDF
    Background We previously identified via a genome wide association study variants near LEKR and CCNL1 and in the ADCY5 genes lead to lower birthweight. Here, we study the impact of these variants and social stress during pregnancy, defined as social adversity and neighborhood disparity, on infant birth size. We aimed to determine whether the addition of genetic variance magnified the observed associations. Methodology/Principal Findings We analyzed data from the Northern Finland Birth Cohort 1986 (n = 5369). Social adversity was defined by young maternal age (<20 years), low maternal education (<11 years), and/or single marital status. Neighborhood social disparity was assessed by discrepancy between neighborhoods relative to personal socio-economic status. These variables are indicative of social and socioeconomic stress, but also of biological risk. The adjusted multiple regression analysis showed smaller birth size in both infants of mothers who experienced social adversity (birthweight by −40.4 g, 95%CI −61.4, −19.5; birth length −0.14 cm, 95%CI −0.23, −0.05; head circumference −0.09 cm 95%CI −0.15, −0.02) and neighborhood disparity (birthweight −28.8 g, 95%CI −47.7, −10.0; birth length −0.12 cm, 95%CI −0.20, −0.05). The birthweight-lowering risk allele (SNP rs900400 near LEKR and CCNL1) magnified this association in an additive manner. However, likely due to sample size restriction, this association was not significant for the SNP rs9883204 in ADCY5. Birth size difference due to social stress was greater in the presence of birthweight-lowering alleles. Conclusions/Significance Social adversity, neighborhood disparity, and genetic variants have independent associations with infant birth size in the mutually adjusted analyses. If the newborn carried a risk allele rs900400 near LEKR/CCNL1, the impact of stress on birth size was stronger. These observations give support to the hypothesis that individuals with genetic or other biological risk are more vulnerable to environmental influences. Our study indicates the need for further research to understand the mechanisms by which genes impact individual vulnerability to environmental insults

    The DRUID study: racism and self-assessed health status in an indigenous population

    Get PDF
    BackgroundThere is now considerable evidence from around the world that racism is associated with both mental and physical ill-health. However, little is known about the mediating factors between racism and ill-health. This paper investigates relationships between racism and self-assessed mental and physical health among Indigenous Australians as well as potential mediators of these relationships.MethodsA total of 164 adults in the Darwin Region Urban Indigenous Diabetes (DRUID) study completed a validated instrument assessing interpersonal racism and a separate item on discrimination-related stress. Self-assessed health status was measured using the SF-12. Stress, optimism, lack of control, social connections, cultural identity and reactions/responses to interpersonal racism were considered as mediators and moderators of the relationship between racism/discrimination and self-assessed health status.ResultsAfter adjusting for socio-demographic factors, interpersonal racism was significantly associated with the SF-12 mental (but not the physical) health component. Stress, lack of control and feeling powerless as a reaction to racism emerged as significant mediators of the relationship between racism and general mental health. Similar findings emerged for discrimination-related stress.ConclusionsRacism/discrimination is significantly associated with poor general mental health among this indigenous population. The mediating factors between racism and mental health identified in this study suggest new approaches to ameliorating the detrimental effects of racism on health. In particular, the importance of reducing racism-related stress, enhancing general levels of mastery, and minimising negative social connections in order to ameliorate the negative consequences of racism

    Detection of long range transport of aerosols with elevated layers over high altitude station in the central Himalayas: A case study on 22 and 24 March 2012 at ARIES, Nainital

    Get PDF
    An advanced version of Boundary Layer LiDAR system, termed as LiDAR for atmospheric measurement and probing (LAMP) has been operational, at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, a high altitude station (29.4°N, 79.5°E, ~1960 m above mean sea level), in central Himalayas, since October 2011. The site is at an altitude, which is well above the planetary boundary layer particularly during the night when observations are taken and thus, lies in the free troposphere. Also, there are no anthropogenic sources of aerosols nearby. However, from March to June, due to strong convection, the aerosols get transported to higher altitudes, up to 2 km or more, from the nearby urban and distant regions as well. Here, a case study of each long range transport and convectively driven elevated aerosol layers, observed with LAMP on 22 and 24 March 2012, has been presented. A normal profile observed on 28 March 2012 without any signature of elevated layer of aerosol is also discussed. The seven days back air mass trajectories over three altitude levels, viz. at 4.5, 3 and 1 km on 22 March; at 4.5, 2 km and 700 m on 24 March, and at 4.5, 2 km and 500 m on 28 March have been derived. The upper levels delineate that the possible origin of the multiple elevated aerosol layers on 22 and 24 March may be transported from far-off regions, such as the dry arid regions of North Africa and Saudi Arabia. To confirm the same, the observations were further substantiated with the TERRA satellite yielded aerosol optical depth (555 nm) obtained from the on board instrument Multi-angle Imaging Spectro Radiometer (MISR), which explicitly shows the high value of time averaged columnar aerosol optical depth (AOD) over Saudi Arabia and Red Sea during 18-23 March 2012 and an appreciable decrease during the period 25-29 March 2012, confirming the origin of long range transport. For the first time, such a high altitude aerosol layers (~4.5 km) are observed over this region. The lowest aerosol layer observed on 24 and 28 March 2012 in vertical aerosol backscatter profile is attributed to the transport from adjoining regions via boundary layer evolution and associated mixing

    Investigations of aerosol black carbon from a semi-urban site in the Indo-Gangetic Plain region

    No full text
    Long-term (2009-2012) data from ground-based measurements of aerosol black carbon (BC) from a semi-urban site, Pantnagar (29.0 degrees N, 79.5 degrees E, 231 m amsl), in the Indo-Gangetic Plain (IGP) near the Himalayan foothills are analyzed to study the regional characterization. Large variations are seen in BC at both diurnal and seasonal scales, associated with the mesoscale and synoptic meteorological processes, and local/regional anthropogenic activities. BC diurnal variations show two peaks (morning and evening) arising from the combined effects of the atmospheric boundary layer (ABL) dynamics and local emissions. The diurnal amplitudes as well as the rates of diurnal evolution are the highest in winter season, followed by autumn, and the lowest in summer-monsoon. BC exhibits nearly an inverse relation with mixing layer depth in all seasons; being strongest in winter (R-2 = 0.89) and weakest (R-2 = 0.33) in monsoon (July-August). Unlike BC, co-located aerosol optical depths (AOD) and aerosol absorption are highest in spring over IGP, probably due to the presence of higher abundances of aerosols (including dust) above the ABL (in the free troposphere). AOD (500 nm) showed annual peak (>0.6) in May-June, dominated by coarse mode, while fine mode aerosols dominated in late autumn and early winter. Aerosols profiles from CALIPSO show highest values close to the surface in winter/autumn, similar to the feature seen in surface BC, whereas at altitudes > 2 km, the extinction is maximum in spring/summer. WRF-Chem model is used to simulate BC temporal variations and then compared with observed BC. The model captures most of the important features of the diurnal and seasonal variations but significantly underestimated the observed BC levels, suggesting improvements in diurnal and seasonal varying BC emissions apart from the boundary layer processes. (C) 2015 Elsevier Ltd. All rights reserved
    corecore